Linear algebra problem with a probable typo

Portuga
Messages
56
Reaction score
6
Homework Statement
Find ##m \in \mathbb{R}## so that the following linear operator in ##\mathbb{R}^3## be an isometry: $$F\left(x,y,z\right)=\left(\frac{1}{\sqrt{3}}x+\frac{1}{\sqrt{3}}y+mz,\frac{-1}{\sqrt{6}}x+\frac{2}{\sqrt{6}}y-\frac{1}{\sqrt{6}}z,-\frac{1}{\sqrt{2}}x+\frac{1}{\sqrt{2}}z\right).$$
Relevant Equations
If ##F## is an isometry, then ##\left\Vert F\left(u\right)\right\Vert =\left\Vert u\right\Vert ##.
Well, my guess is that there is something wrong with the factors chosen, because ##\left\Vert \left(0,1,0\right)\right\Vert =1## and
\begin{align}
\left\Vert F\left(0,1,0\right)\right\Vert &=\left\Vert \left(\frac{1}{\sqrt{3}}\left(0\right)+\frac{1}{\sqrt{3}}\left(1\right)+m\left(0\right),\frac{-1}{\sqrt{6}}\left(0\right)+\frac{2}{\sqrt{6}}\left(1\right)-\frac{1}{\sqrt{6}}\left(0\right),-\frac{1}{\sqrt{2}}\left(0\right)+\frac{1}{\sqrt{2}}\left(0\right)\right)\right\Vert \\&=\left\Vert \left(\frac{1}{\sqrt{3}},\frac{2}{\sqrt{6}},0\right)\right\Vert \\&=\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{2}{\sqrt{3}}\right)^{2}}\\&=\sqrt{\frac{1}{3}+\frac{4}{3}}\\&=\sqrt{\frac{5}{3}}.
\end{align}
So, am I wright? I mean, it looks like it was some kind of a typing error.
 
Physics news on Phys.org
Have you checked some other vectors if you replace ##\dfrac{2}{\sqrt{6}}y## by ##\dfrac{2}{\sqrt{3}}y## in the second component of ##F##?

Another possibility could be a different norm.
 
I think that you have a mistake in the third line of your calculation. The y term should be ##(2/\sqrt{6})^2##, not ##(2/\sqrt{3})^2##
 
Last edited:
Oh, thanks!
 
Portuga said:
Oh, thanks!
It would have been a good idea to write ##F## as a matrix:
$$F \ \dot = \ \begin{bmatrix}
\frac 1 {\sqrt 3}&\frac 1 {\sqrt 3}&m\\
-\frac 1 {\sqrt 6}&\frac 2 {\sqrt 6}&-\frac 1 {\sqrt 6}\\
-\frac 1 {\sqrt 2}&0&\frac 1 {\sqrt 2}
\end{bmatrix}$$And then things are obvious, hopefully.
 
Yes, now I got the point.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top