Methods for Solving Linear Algebraic Equations: Which One Is Best?

eddysd
Messages
39
Reaction score
0
For the system of linear algebraic equations:
x − y = 1
2x + 3y = 7
a) find solution by the Cramer’s rule;
b) find solution by the method of Gaussian elimination;
c) write the first iteration of the Jacobi method with the initial guess x^0=y^0=1.

I understand Cramer's Rule, and I think I understand Gaussian elimination, have got
x=2 and y=1 for both of them, but I have no idea how to do part c). Can anyone help me?
 
Physics news on Phys.org
In terms of matrices, this system would be written as
\begin{bmatrix}1 & -1 \\ 2 & 3\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix}= \begin{bmatrix}1 \\ 7\end{bmatrix}

We can take out the "diagonal" and rewrite it as
\begin{bmatrix}1 & 0 \\ 0 & 3\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix}i+ \begin{bmatrix}0 & -1 \\2 & 0\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}= \begin{bmatrix}1 \\ 7\end{bmatrix}

so that
\begin{bmatrix}1 & 0 \\ 0 & 3\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}1 \\ 7\end{bmatrix}- \begin{bmatrix}0 & -1 \\2 & 0\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}

or, just in terms of the equations, x= 1+ y, 3y= 7- 2x so we have x= 1+ y, y= (7- 2x)/3.

Taking x^0= y^0= 1, we have x^1= 1+ y^0= 1+ 1= 2 and y^1= (7- 2x^0)/3= (7- 2)/3= 5/3.
 
Thank you, very helpful! :biggrin:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top