Linear programming and the two phase method

catcherintherye
Messages
47
Reaction score
0
what exactly is the point of the two phase method? I have in my notes that 'if you have a program (P)

maximise xc_T x >= 0 , Ax<=b,but b not > 0, that we use the two phase method for to find a B.F.S to start the simplex algorithm. But then the notes go on to say that we use the method to solve a minimization problem.
 
Physics news on Phys.org
The basic idea is that if one cannot readily identify a bfs for the original LP problem then one extends the LP (by adding more variables) so that a bfs can be readily identified.

Now the extended is problem is solved as an LP. The extension is such that is the initial LP was feasible then the optimal solution of the extended LP has all the extended vaibale zero (big M value in the objective function is the reason). Now we have a bfs for the initial problem and is used to start the simplex routine for the initial problem.
 
To put it simply, the main advantage of the two-phase Simplex method is:
in LP problems with equality in their constraints, and >= constraints (which usually occurs in a minimization problem),
we need to use big M cost coefficient in the objective function for introduction of artificial variables.
In the computer environment, how big should this value of M be? 1000000? 9999999? largest possible real number in the OS? We don't know unless we know the relative magnitude of the numbers in the problem. How are we going to program this in the Simplex algorithm with 0% logic error?

So, the two-phase method cleverly avoid this big M problem, by first considering only the artificial variables contribution to the objective function, do the Simplex until optimality is found. Then the second phase is to introduce the contribution of the decision variables back to the objective function, and do Simplex algorithm from there to reach optimality. In this way, we avoid the big M calculations!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top