Linear transformation rotation

fk378
Messages
366
Reaction score
0

Homework Statement


T: R2-->R2 first reflects points through -3pi/4 radian (clockwise) and then reflects points through the horizontal x1-axis. [Hint T(e1)= (-1/sqrt2, 1/sqrt2)



The Attempt at a Solution


I just don't understand why the points would be (-1/sqrt2, 1/sqrt2). If it's -3pi/4, why wouldn't it be (-(sqrt2)/2, -(sqrt2)/2)?
 
Physics news on Phys.org
Did you miss the part about the reflection or are you rotating the wrong way? Rotating (1, 0) -3pi/4 radians (clockwise as it says) gives you (-1/sqrt(2), -1/sqrt(2)) but then the reflection through the horizontal axis changes that to (-1/sqrt(2),+1/sqrt(2)).
 
Doesn't -3pi/4 radians correlate to (-(sqrt2)/2, -(sqrt2)/2) though (on a unit circle)? Where is the sqrt2 on the bottom coming from?
 
Are you aware that 2= (sqrt(2))*(sqrt(2))? 1/sqrt(2) is exactly the same as sqrt(2)/2.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top