Tangent Lines to f(x) at Point (2,7)

  • Thread starter Thread starter Squiller
  • Start date Start date
  • Tags Tags
    Lines Tangent
Squiller
Messages
6
Reaction score
0

Homework Statement



f(x) = 4x-x2

Question: Find the equations of the lines that pass through P(2,7) and are tangent to the graph of f(x).

(P is not on f(x).)
Thats all the problem states.

Homework Equations



f(x) = 4x-x2
Point (2,7)

The Attempt at a Solution



Ive tried finding f'(x) and plugging f' into the Line equation y=mx+b.

y=(4-2x)x+b.

Then plugging in Point P.

7=(4-2x)2+b - I am not really sure if this is heading in the right direction.
 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top