How Does the Complex Logarithm Function Differ Across Branches?

  • Thread starter Thread starter neginf
  • Start date Start date
  • Tags Tags
    Log
neginf
Messages
56
Reaction score
0

Homework Statement



Show that

(a) log(i^2) = 2*log(i) when log z=ln r + i * theta (r>0 and pi/4 < theta < 9*pi/4)
(b) log(i^2) <> 2*log(i) when log z=ln r + i * theta (r>0 and 3*pi/4 < theta < 11*pi/4)

Homework Equations



log z = ln r + i * theta

The Attempt at a Solution



Got log(i) = i * pi/2
log(i^2)= i * pi.
Are those right ?

Do not know what to do with ranges given for theta.
 
Last edited:
Physics news on Phys.org
You're assuming i = eiπ/2, but you also have i = ei(π/2+2π) = ei(π/2+4π) and so on. Now do you see what the problem is getting at?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top