Logarithim question decreasing in value

  • Thread starter Thread starter pinnacleprouk
  • Start date Start date
  • Tags Tags
    decreasing Value
AI Thread Summary
The discussion focuses on solving a logarithmic equation related to the radioactivity of a substance, modeled by R = A x 2 ^ -Bt. The initial radioactivity is given as 60 becquerels, decreasing to 50 becquerels after one hour. The constants A and B are derived, with A confirmed as 60, while B is recalculated to be approximately 0.2630. The half-life, initially estimated at 3 hours, is corrected to about 3.8 hours. The thread emphasizes the importance of accurate logarithmic calculations in determining these values.
pinnacleprouk
Messages
26
Reaction score
0
Logarithim question "decreasing in value"

Homework Statement



The Radioactivity (R) of a substance can be modeled using the equation:

R = A x 2 ^ -Bt

Where R is measured in becquerels per gram, t is measured in hours and A and B are constants.
If a substance has an initial radioactivity of 60 becquerels and one hour later it is 50 becquerels find A and B and the time for the radioactivity to reduce to half its initial value (Half Life)



Homework Equations



R = A x 2 ^ -Bt



The Attempt at a Solution



R = A x 2 ^ - Bt

R = 60 t = 0
R = 50 t = 1
60 = A x 2 ^ - Bx0

60 = A

50 = 60 x 2 ^ - B

2 - B = 50/60

2 - B = 0.8

log 2 - B = log 0.8

- B log 2 = log 0.8

- B = log 0.8/log 2

- B = - 0.32

Is this all right?

I work out half life to be around 3 hours but could anybody give me a more exact time?

Thanks in advance
 
Physics news on Phys.org


Solved t = 3.125

Thanks
 


pinnacleprouk said:

Homework Statement



The Radioactivity (R) of a substance can be modeled using the equation:

R = A x 2 ^ -Bt

Where R is measured in becquerels per gram, t is measured in hours and A and B are constants.
If a substance has an initial radioactivity of 60 becquerels and one hour later it is 50 becquerels find A and B and the time for the radioactivity to reduce to half its initial value (Half Life)



Homework Equations



R = A x 2 ^ -Bt



The Attempt at a Solution



R = A x 2 ^ - Bt

R = 60 t = 0
R = 50 t = 1
60 = A x 2 ^ - Bx0

60 = A

50 = 60 x 2 ^ - B
The next line is incorrect. It should be 2-B = 50/60 = 5/6
pinnacleprouk said:
2 - B = 50/60
The next line is also incorrect. 5/6 != .8
pinnacleprouk said:
2 - B = 0.8

log 2 - B = log 0.8

- B log 2 = log 0.8
The next line is incorrect, but at least I understand what you are doing. It would be correct if you had on the right side (log 5/6)/log 2
pinnacleprouk said:
- B = log 0.8/log 2

- B = - 0.32
You're actually off by quite a bit. To 4 decimal places, B = .2630
pinnacleprouk said:
Is this all right?


I work out half life to be around 3 hours but could anybody give me a more exact time?
It's about 3.8 hours.
pinnacleprouk said:
Thanks in advance
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top