I Looking for a creative or quick method for finding roots in GF(p^n)

kmitza
Messages
17
Reaction score
4
TL;DR
I have been revising some calculation skills in Galois theory and I ran into a problem. if we have an irreducible polynomial of degree 3 over GF(3) and we construct GF(27) as GF(3)/<f> and we have another such polynomial g(x) how do we find it's explicit roots in GF(27)
I am going to give up a bit more on the given problem. We start with polynomial ## x^27 -x ## over GF(3)[x] and we factorize it using a well known theorem it turns out it factorises into the product of monic polynomials of degree 1 and 3, 11 of them all together.

We then choose one of those polynomials and consider ## GF(3)/<x^3+x^2+2> ## and we're asked to find roots for the other 7 irreducible polynomials of degree 3 in GF(27) constructed this way and give isomorphisms between ## GF(3)/<f> ## and ## GF(3)/<g> ## for each of them.

It's not hard to see how to give the isomorphism but I am struggling with finding the explicit roots. I am wondering if anyone knows of a good method for doing this that isn't just plugging in all 27 elements the first time and then 24 and so on...

I know that there are probably computer methods for doing this but I am not looking for those.
 
Physics news on Phys.org
Fix use {} around 27 for Latex.
 
mathman said:
Fix use {} around 27 for Latex.
Thanks for the tip!
 
kmitza said:
Summary:: I have been revising some calculation skills in Galois theory and I ran into a problem. if we have an irreducible polynomial of degree 3 over GF(3) and we construct GF(27) as GF(3)/<f> and we have another such polynomial g(x) how do we find it's explicit roots in GF(27)

I am going to give up a bit more on the given problem. We start with polynomial ## x^27 -x ## over GF(3)[x] and we factorize it using a well known theorem it turns out it factorises into the product of monic polynomials of degree 1 and 3, 11 of them all together.

We then choose one of those polynomials and consider ## GF(3)/<x^3+x^2+2> ## and we're asked to find roots for the other 7 irreducible polynomials of degree 3 in GF(27) constructed this way and give isomorphisms between ## GF(3)/<f> ## and ## GF(3)/<g> ## for each of them.

It's not hard to see how to give the isomorphism but I am struggling with finding the explicit roots. I am wondering if anyone knows of a good method for doing this that isn't just plugging in all 27 elements the first time and then 24 and so on...

I know that there are probably computer methods for doing this but I am not looking for those.
I have found two papers about it.
https://www.ams.org/journals/mcom/1...-1969-0257039-X/S0025-5718-1969-0257039-X.pdf
https://people.csail.mit.edu/dmoshkov/courses/codes/poly-factorization.pdf

I once met von zur Gathen, so I would start with the second one, but the first one is on the reference list of the second.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
0
Views
2K
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K