I Looking for a creative or quick method for finding roots in GF(p^n)

kmitza
Messages
17
Reaction score
4
TL;DR Summary
I have been revising some calculation skills in Galois theory and I ran into a problem. if we have an irreducible polynomial of degree 3 over GF(3) and we construct GF(27) as GF(3)/<f> and we have another such polynomial g(x) how do we find it's explicit roots in GF(27)
I am going to give up a bit more on the given problem. We start with polynomial ## x^27 -x ## over GF(3)[x] and we factorize it using a well known theorem it turns out it factorises into the product of monic polynomials of degree 1 and 3, 11 of them all together.

We then choose one of those polynomials and consider ## GF(3)/<x^3+x^2+2> ## and we're asked to find roots for the other 7 irreducible polynomials of degree 3 in GF(27) constructed this way and give isomorphisms between ## GF(3)/<f> ## and ## GF(3)/<g> ## for each of them.

It's not hard to see how to give the isomorphism but I am struggling with finding the explicit roots. I am wondering if anyone knows of a good method for doing this that isn't just plugging in all 27 elements the first time and then 24 and so on...

I know that there are probably computer methods for doing this but I am not looking for those.
 
Physics news on Phys.org
Fix use {} around 27 for Latex.
 
mathman said:
Fix use {} around 27 for Latex.
Thanks for the tip!
 
kmitza said:
Summary:: I have been revising some calculation skills in Galois theory and I ran into a problem. if we have an irreducible polynomial of degree 3 over GF(3) and we construct GF(27) as GF(3)/<f> and we have another such polynomial g(x) how do we find it's explicit roots in GF(27)

I am going to give up a bit more on the given problem. We start with polynomial ## x^27 -x ## over GF(3)[x] and we factorize it using a well known theorem it turns out it factorises into the product of monic polynomials of degree 1 and 3, 11 of them all together.

We then choose one of those polynomials and consider ## GF(3)/<x^3+x^2+2> ## and we're asked to find roots for the other 7 irreducible polynomials of degree 3 in GF(27) constructed this way and give isomorphisms between ## GF(3)/<f> ## and ## GF(3)/<g> ## for each of them.

It's not hard to see how to give the isomorphism but I am struggling with finding the explicit roots. I am wondering if anyone knows of a good method for doing this that isn't just plugging in all 27 elements the first time and then 24 and so on...

I know that there are probably computer methods for doing this but I am not looking for those.
I have found two papers about it.
https://www.ams.org/journals/mcom/1...-1969-0257039-X/S0025-5718-1969-0257039-X.pdf
https://people.csail.mit.edu/dmoshkov/courses/codes/poly-factorization.pdf

I once met von zur Gathen, so I would start with the second one, but the first one is on the reference list of the second.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top