Magnitude of the current in a battery

AI Thread Summary
The discussion centers on calculating the current magnitude in a 14V battery within a multi-loop circuit. The initial assumption that the current inside an ideal battery is 0 amps was found to be incorrect. The user attempted to apply Kirchhoff's laws but struggled with setting up the loop equations correctly, leading to confusion about the role of the battery in the circuit. After feedback, it was clarified that the user had overlooked the correct treatment of voltage polarities in their equations. Ultimately, this insight helped the user resolve their misunderstanding and correctly calculate the current.
nickm
Messages
3
Reaction score
0

Homework Statement


7WRrP.png


Find the magnitude of the current in the 14V cell.
Answer in units of Amperes.

Homework Equations


Kirchoff's junction & loop laws:
I1 = I2 + I3

ƩΔV = 0

V = IR

Rseries = R1 + R2 + ...

1/Rparallel = 1/R1 + 1/R2 + ...


The Attempt at a Solution


At first I assumed that the current inside an ideal battery is 0 amps. But it appears that is incorrect. I've been going over my notes and looking through my book for a while now, but I have had no luck in finding out how to find the current in a battery in a multi-loop circuit. I have also tried setting up 2 different loop equations but those were wrong too. I know that the value has to be positive because it wants the magnitude. I'm not going to give up on this but I do need help from a reliable source. Any help is welcome.
 
Physics news on Phys.org
nickm said:

Homework Statement


7WRrP.png


Find the magnitude of the current in the 14V cell.
Answer in units of Amperes.

Homework Equations


Kirchoff's junction & loop laws:
I1 = I2 + I3

ƩΔV = 0

V = IR

Rseries = R1 + R2 + ...

1/Rparallel = 1/R1 + 1/R2 + ...


The Attempt at a Solution


At first I assumed that the current inside an ideal battery is 0 amps. But it appears that is incorrect. I've been going over my notes and looking through my book for a while now, but I have had no luck in finding out how to find the current in a battery in a multi-loop circuit. I have also tried setting up 2 different loop equations but those were wrong too. I know that the value has to be positive because it wants the magnitude. I'm not going to give up on this but I do need help from a reliable source. Any help is welcome.

How do you know your "2 different loop equations" were wrong?

Also, in the context of this problem, I'm 98.3% positive that "1/Rparallel = 1/R1 + 1/R2 + ..." is irrelevant.
 
What I had done was Loop 1 being the circuit containing the 14 V battery and the 29V battery. Setting up the equation 12I2 - 23I1 = -43 for the top loop and 12I1 - 27I2 = -66 for the bottom loop. Then I put together a system of equations. I multiplied the top loop equation by 9 and the bottom by 4 so that the I2 would cancel. This gave me the value of I1 to be about 4.094 amps. Knowing that the current in a series of resistors is equal to each other, I had assumed that the battery was some sort of resistor so I had put that answer down and the system showed to be wrong.

Also, thanks for the quick response!
 
nickm said:
What I had done was Loop 1 being the circuit containing the 14 V battery and the 29V battery. Setting up the equation 12I2 - 23I1 = -43 for the top loop and 12I1 - 27I2 = -66 for the bottom loop. Then I put together a system of equations. I multiplied the top loop equation by 9 and the bottom by 4 so that the I2 would cancel. This gave me the value of I1 to be about 4.094 amps. Knowing that the current in a series of resistors is equal to each other, I had assumed that the battery was some sort of resistor so I had put that answer down and the system showed to be wrong.

Also, thanks for the quick response!

Ah. When you went around your loops and summed the voltage supplies, you didn't take into account the fact that you're passing through one going from positive to negative, and the other negative to positive.
 
Gah, it is always the little mistakes! Thank you so much, I finally got it! :D
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top