Solving the Frequency of Small Oscillations in a Spherical Dish

AI Thread Summary
The discussion focuses on finding the frequency of small oscillations of a marble rolling in a spherical dish using both conservation of energy and Newton’s second law. Participants are attempting to derive the expected result, w^2 = 5g/7R, but some encounter issues with their calculations. One contributor notes that they adjusted the radius in their calculations to R - b, which they believe is more accurate for a small marble. The conversation emphasizes the importance of correctly applying the principles of energy conservation and rotational dynamics to achieve consistent results. Ultimately, the goal is to confirm that both methods yield the same frequency for the oscillations.
S0C0M988
Messages
6
Reaction score
0
A marble of radius b rolls back and forth in a shallow spherical dish of radius R. Find the frequency of small oscillations. You can solve this problem using conservation of energy or using Newton’s second law. Solve it both ways and show that you get the same answer.

I kind of get the concept and I'm using conservation of energy but he numbers don't work out. I know the answer is supposed to be w^2 = 5g/7R

I set up PE = KE + Rotational KE but it doesn't work.
 
Physics news on Phys.org
S0C0M988 said:
A marble of radius b rolls back and forth in a shallow spherical dish of radius R. Find the frequency of small oscillations. You can solve this problem using conservation of energy or using Newton’s second law. Solve it both ways and show that you get the same answer.

I kind of get the concept and I'm using conservation of energy but he numbers don't work out. I know the answer is supposed to be w^2 = 5g/7R

I set up PE = KE + Rotational KE but it doesn't work.
It worked for me except I have R - b instead of R. Assuming a small marble. R is close enough.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top