There have been a few diversions in this thread due at least in part to ambiguous wording in the question. For anyone looking for a well-written introduction to Markov chains I can recommend the freely available notes and (unambiguously worded) exercises from
this Cambridge University course.
Otherwise please note the solutions to the unambiguous parts below. Please start a new thread for any further discussion.
a-) Specify the state space of (Xn : n ≥ 0).
We are told that ## X_n ## denotes the number of working machines at the end of day before the repairman begins any over-night repair. As there are 3 machines we can immediately write down the answer ## S = \{0, 1, 2, 3\} ##.
b-) Determine the transition matrix in terms of p.
If there are no machines are working at the end of day ## t ## then the first thing that happens is exactly 1 machine is repaired overnight, then by the end of the next day either:
- exactly one machine breaks down (the one that was repaired) with probability ## q = 1 - p ## and so there are no machines working at the end of day ## t + 1 ##. We can now make the first entry in the transition matrix ## a_{0, 0} = 1-p ##.
- no machines break down with probability ## p ## and so there is exactly 1 machine working at the end of day ## t + 1 ## (the one that was repaired overnight). We can now make the second entry in the transition matrix ## a_{0, 1} = p ##.
Because we started the day with only one machine working there are no other possibilities and so we can complete the first row of the transition matrix with zeros.
For the second row we start with exactly 1 machine working at the end of day ## t ## so after another machine is repaired overnight there are more possibilities for what can happen during the next day and the second row looks like ## \left [(1-p)^2, 2p(1-p), p^2, 0 \dots \right ] ## (note that the sum of each row is always 1: the matrix is said to be a
right stochastic matrix and has a number of useful properties).
c-) Given that 2 machines are idle tonight, what is the probability of one idle machine 3 nights later, if p = 0.8 (answer 6 decimal places).
The answer to this question depends on the meaning of the word "idle" and whether we seek the probability of at least one or exactly one "idle" machine. Once we have determined these we can establish the initial state (row) vector ## \tau_0 ## and calculate the probabilities using ## \tau_3 = ((\tau_0 P)P)P = \tau_0 P^3 ##.