Mass Confined to Rotating Hoop with Moment of Inertia I3

tphysicsb
Messages
3
Reaction score
0
1. Homework Statement

A particle of mass can slide without friction on the inside of a small tube bent in a circle of radius r. The tube can rotate freely about the vertical axis, x3, and has a moment of inertia I3 about this axis.


Homework Equations


a) Derive the Hamiltonian for this system. I was able to determine the Hamiltonian to be.

b) List the cyclic coordinates and determine the conserved qty associated with each?

c) Write down Hamilton's equation of motion

The Attempt at a Solution



a) I was able to determine the Hamiltonian to be.
H= (Pθ)^2/2mr^2 + (P∅)^2/(2(I3+mr^2(sinθ)^2)) +mgrcosθ +c

b)I was able to determine the Lagrangian to be
L= 1/2mr^2 (theta dot)^2 + 1/2 mr^2(phi dot)^2(sinθ)^2 +1/2I3 (phi dot)^2 -mgrcosθ -c


Since the Lagrangian does not explicitly depend on phi(∅) which i believe this just ends up telling me that the conjugate momentum P∅ is constant ?

c) I used (q dot) = ∂H/∂pi and -pi = ∂H/∂qi

and found

(theta dot) = pθ/ mr2 = 1
p dot theta = mgrsinθ - mr^2 (phi dot)^2 sinθcosθ


P∅ = constant

(phi dot) = Pθ/ (I3 + mr^2(sinθ) ^2






I want to determine if I am on the right track with part b and part c. Specifically is their anything else to be be determined from part b other then the conjugate momentum (P∅ = constant) ??


Also Now that i determined the equations of motion in partC. What it is the next step to determine the equations of motion.

Any guidance you may have would be greatly appreciated



 
Physics news on Phys.org


Cyclic coordinates just mean a coordinate upon which the lagrangian doesn't depend.

In c.) you determined the Hamilton equations of motion, so you don't need to go further.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top