Mastering Integrals: Solving \int {\frac {1} {(\sqrt {-x})}} dx Confusion

  • Thread starter Thread starter LinkMage
  • Start date Start date
  • Tags Tags
    Integrals
LinkMage
Messages
18
Reaction score
0
How do I do this?
\int {\frac {1} {(\sqrt {-x})}} dx
I got 2 \sqrt {-x} but my teacher got -2 \sqrt {-x} and I don't know how he got there.
 
Last edited:
Physics news on Phys.org
If you show how you got your answer then we will point out your mistake.
 
\int {\frac {1} {\sqrt{-x}}} dx = \int {\frac {1} {(-x)^{1/2}} dx = \int {(-x)^{-1/2}} dx = \frac {(-x)^{-1/2+1}} {-1/2+1} = \frac {(-x)^{1/2}} {1/2} = 2 \sqrt {-x}
 
Last edited:
Nope,
You are wrong when going from:
\int (-x) ^ {-\frac{1}{2}} dx to \frac{(-x) ^ {-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} + C.
The reason is that, you only have:
\int x ^ \alpha dx = \frac{x ^ {\alpha + 1}}{\alpha + 1} + C.
You do not have:
\int (-x) ^ \alpha dx = \frac{(-x) ^ {\alpha + 1}}{\alpha + 1} + C
So, from \int (-x) ^ {-\frac{1}{2}} dx, you can use u-substitution:
Let u = -x, so du = -dx (or you can say dx = -du). So the integral becomes:
\int u ^ {-\frac{1}{2}}(-du) = - \int u ^ {-\frac{1}{2}}du = -2 u ^ {\frac{1}{2}} + C. Since u = -x, so change u back to x, you'll have:
-2\sqrt{-x} + C
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top