Mastering Integration: Proving the Integral of e-ax^2 and Solving for x2.e-ax^2

  • Thread starter Thread starter henryc09
  • Start date Start date
  • Tags Tags
    Integration
henryc09
Messages
68
Reaction score
0

Homework Statement


Given that:

The integral between infinity and -infinity of

e-ax^2 dx = \sqrt{\pi/a}

show that

The integral between 0 and infinity of

x2.e-ax^2 dx = 1/4\sqrt{\pi/a^3}


Homework Equations





The Attempt at a Solution


don't really know where to start
 
Physics news on Phys.org
integrate by parts
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top