Mastering Integration Techniques: Solving ∫x^4 e^-x dx

  • Thread starter Thread starter afcwestwarrior
  • Start date Start date
  • Tags Tags
    Integral
afcwestwarrior
Messages
453
Reaction score
0
∫x^4 e^-x dx

ok this equation looks like this integral
∫u^n e^au du= (1/a) u^n e^au - n/a ∫u^n-1 e^au du

i did integration by parts and i ran in circles, and i tried substituting u=-x

but i couldn't do much with it, so what can i do
 
Physics news on Phys.org
afcwestwarrior said:
i did integration by parts and i ran in circles

\int x^4 e^{-x} dx = -x^4 e^{-x} + \int 4 x^3 e^{-x} dx
Itterate this for the integral on the right until the x term disapears.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top