Hi!
I will help you with a full list of steps for one of the parts:
<br />
<br />
\frac{4}{3(z + 4)} = \frac{4}{3(4(\frac{z}{4} + 1))} = \frac{1}{3(\frac{z}{4} + 1)} = \frac{1}{3(1 + \frac{z}{4})} = \frac{1}{3}\cdot \frac{1}{(1 + \frac{z}{4})} = \frac{1}{3}\cdot\frac{1}{(1-(-\frac{z}{4}))} = \frac{1}{3}\left ( 1 + (-\frac{z}{4}) + (-\frac{z}{4})^{2} + (-\frac{z}{4})^{3} +\cdots \right ) = <br />
<br />
<br />
<br />
= \frac{1}{3}\left ( 1 - \frac{z}{4} + \frac{z^{2}}{4^{2}} - \frac{z^{3}}{4^{3}} +\cdots \right ) = \frac{1}{3} - \frac{z}{3\cdot 4} + \frac{z^{2}}{3\cdot 4^{2}} - \frac{z^{3}}{3\cdot 4^{3}} +\cdots<br />
Remember that for a given geometric series to converge |x| has to be less than 1. which in your case means:
<br />
\left |\frac{z}{4} \right |<1<br />I hope you will understand all the steps otherwise do ask.
P.S. I used the sum of the geometric series (which is also the Taylor and Laurent series): 1/(1 - x) = 1 + x + x^2 + x^3 + ...
|x|<1