Mastering Physics: Acceleration of a Pulley

AI Thread Summary
The discussion revolves around calculating the angular acceleration (α) of a pulley system involving a block and a rotating cylinder. The user initially attempted to derive α using equations of motion and torque but arrived at an incorrect answer. The correct angular acceleration is α = 2g/3r, which was clarified through algebraic manipulation involving the moment of inertia (I) and tension (T). The confusion stemmed from the relationship between torque and tension, emphasizing that the net force must account for acceleration. The conversation concludes with a suggestion to verify the result using energy methods for further understanding.
danielhep
Messages
14
Reaction score
1

Homework Statement


A string is wrapped around a uniform solid cylinder of radius r, as shown in (Figure 1) . The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m.
Find the magnitude α of the angular acceleration of the cylinder as the block descends.
upload_2017-4-15_19-12-53.png


Homework Equations


F=ma=mg-T
Torque=Iα=-Tr
a=-rα
I=mr2/2

The Attempt at a Solution


I use these three equations to eliminate T and solve for α.

m(-rα)=mg-T
-1/2mr=T
-mrα=mg+1/2mr
-α=g/r+1/2
α=-1/2-g/r

I tried this answer however it was wrong.

Mastering says the correct answer is
α = 2g/3r

I'm really not sure where this comes from, so any help would be great! I need to understand where I went wrong.
 
Physics news on Phys.org
danielhep said:
-1/2mr=T
Where did this come from? It doesn't look right.

Edit: Okay, now I see what you did. You were equating Iα to -Tr, then substituting I = mr2/2 for I. You should work through that algebra again and I think you'll find your problem.
 
TomHart said:
Where did this come from? It doesn't look right.

Edit: Okay, now I see what you did. You were equating Iα to -Tr, then substituting I = mr2/2 for I. You should work through that algebra again and I think you'll find your problem.
I dropped the g. Thank you so much! I found the correct answer.
 
  • Like
Likes TomHart
why is Iα = -Tr. Shouldn't the force acting on it be mg since T (from cylinder to block) - T (from block to cylinder) -mg = mg? Or shouldn't it be mg - T, which is what we defined the net force as above.
 
qdnwedowlnd said:
why is Iα = -Tr. Shouldn't the force acting on it be mg since T (from cylinder to block) - T (from block to cylinder) -mg = mg? Or shouldn't it be mg - T, which is what we defined the net force as above.
It won't just be mg as that would assume that there is no acceleration of the mass.

The pulley experiences a torque just due to the Tension, so that is why I\ddot{\theta} = Tr (or with a minus sign if you choose to define in other direction), and then the other terms come into play when we substitute our expression that we get from Newton's 2nd law on the mass.

Note: you can also solve this by energy and differentiate to get \ddot{\theta} to check your answer.

Hope that helps.
 
  • Like
Likes qdnwedowlnd
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top