Tangent Line at t=0 for Parametric Curve (8sin(5t)-3, 8cos(5t)+3, 3t-4)

  • Thread starter Thread starter alchal
  • Start date Start date
alchal
Messages
3
Reaction score
0

Homework Statement



If the parametric equations of a curve C are (x= 8sin(5 t) -3, y=8cos(5 t) + 3, z=3 t -4),
what are the parametric equations of the tangent line to this curve at t=0 ?

The Attempt at a Solution



x(t)=8sin(5t)-3
y(t)=8cos(5t)+3
z(t)=3t-4

x'(t)=40cos(5t)
y'(t)=-40sin(5t)
z'(t)=3

x'(0)=40
y'(0)=0
z'(0)=3

not even sure if I am doing this right...
 
Physics news on Phys.org
You're doing alright so far. A parametric equation for the tangent line will take the form a + hb, where a is a position vector for the point on your original curve at t = 0, h is a scalar, namely the parameter for this new equation describing the tangent line, and b is a displacement vector tangent to your original curve at t = 0, for example the derivative you found: (40,0,3).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top