We use the following result from https://www.researchgate.net/publication/318418316_The_Non-Commutative_Binomial_Theorem: in any unital Banach algebra, we have $$e^{X+Y}=e^Xe^Y+\left(\sum_{n=0}^\infty\frac{D_n(Y,X)}{n!}\right)e^Y$$ where $$D_{n+1}(Y,X)=[Y,X^n+D_n(Y,X)]+X\cdot D_n(Y,X)$$ is defined by a recurrence relation, with ##D_0(Y,X)=D_1(Y,X)=0##. From this it is clear that ##D_2(Y,X)=[Y,X]##.
Assume that ##X,Y\in\mathcal{A}## where ##\mathcal{A}## is a unital Banach algebra. Our strategy is as follows: factor the non-commuting part as ##\gamma([Y,X])##, where ##\gamma## is some element of the operator algebra ##B(\mathcal{A})## dependent on ##X## and ##Y##, then obtain bounds on its operator norm. Firstly, let us work in the
enveloping algebra of ##\mathcal{A}##. Let us denote ##\mathrm{ad}_X=L_X-R_X##. We can rewrite ##D_n## in the following manner: $$D_{n+1}(Y,X)=[Y,X^n]+(L_X+\mathrm{ad}_Y)(D_n(Y,X)).$$ Our goal is to rewrite ##D_n## as a linear combination of previous elements in the sequence, for reasons that will become clear. Observe that ##[Y,X^n]=[Y,X^{n-1}]X+X^{n-1}[Y,X]##. Since ##D_{n+1}-(L_X+\mathrm{ad}_Y)D_n=[Y,X^n]##, we have $$[Y,X^n]=[Y,X^{n-1}]X+X^{n-1}[Y,X]=\left(D_n-(L_X+\mathrm{ad}_Y)(D_{n-1})\right)X+X^{n-1}[Y,X].$$ This implies that we can rewrite ##D_n## in the following manner: $$D_{n+2}=(D_{n+1}-(L_X+\mathrm{ad}_Y)(D_{n}))X+X^n[Y,X]+(L_X+\mathrm{ad}_Y)(D_{n+1})\\=X^n[Y,X]+(L_X+R_X+\mathrm{ad}_Y)(D_{n+1})-R_X(L_X+\mathrm{ad}_Y)(D_n).$$ Now, suppose that there exists ##\Gamma_n\in B(\mathcal{A})## for ##n<k## such that ##\Gamma_n([Y,X])=D_n(Y,X)##. Then, provided that ##k\geq 2##, one can find ##\Gamma_k## such that ##\Gamma_k([Y,X])=D_k(Y,X)##, using the second-order equation for ##D_n##: $$\Gamma_k=L_{X^{k-2}}+(L_X+R_X+\mathrm{ad}_Y)\Gamma_{k-1}-R_X(L_X+\mathrm{ad}_Y)\Gamma_k.$$ Letting ##\Gamma_0=\Gamma_1=0##, we have ##k=2## and the formula holds for all ##\Gamma_n## by induction. (In particular, ##\Gamma_2=\mathrm{id_{\mathcal{A}}}##.) Now let ##\gamma=\sum_{n=0}^\infty\frac{\Gamma_n}{n!}## and we have the formula ##e^{X+Y}-e^Xe^Y = \gamma([Y,X])\cdot e^Y##.
Now we obtain bounds on the operator norm of ##\gamma##, for ##\|e^{X+Y}-e^Xe^Y\|\leq\|\gamma\|_{\mathrm{op}}\,\|[Y,X]\|\,\|e^Y\|##. First note that
$$\|\gamma\|_{\mathrm{op}}\leq\sum_{n=0}^\infty\frac{\|\Gamma_n\|_{\mathrm{op}}}{n!}$$ by subadditivity. From the defining recurrence relation of ##\Gamma_n##, we have the following inequality: $$\|\Gamma_{n+2}\|\leq\|L_X\|^n+(\|L_X\|+\|R_X\|+\|\mathrm{ad}_Y\|\,\|\Gamma_{n+1}\|+\|R_X\|(\|L_X\|+\|\mathrm{ad}_Y\|)\,\|\Gamma_n\|$$ by subadditivity and submultiplicativity of the operator norm. We can make substitutions based on the fact that ##\|L_X\|_{\mathrm{op}},\|R_X\|_{\mathrm{op}}\leq\|X\|_{\mathcal{A}}##, implying that ##\|\mathrm{ad}_Y\|_{\mathrm{op}}\leq 2\|Y\|_{\mathcal{A}}##. Suppose ##\|X\|,\|Y\|\leq C##. Then we have the inequality $$\|\Gamma_{n+2}\|\leq C^n+4C\|\Gamma_{n+1}\|+3C^2\|\Gamma_n\|.$$ Roughly, this suggests that ##\|\Gamma_n\|=O(C^{n-2})## when n is held constant, which we will now make more precise. Let $$a_{n+2}=1+4a_{n+1}+3a_n;\quad a_0=a_1=0.$$ If we have ##a_n\geq\|\Gamma_n\|C^{n-2}## for ##n<k##, then one has $$\|\Gamma_k\|\leq C^{k-2}+4C\|\Gamma_{k-1}\|+3C^2\|\Gamma_{k-2}\|\\\leq C^k+4C\cdot C^{k-3}a_{k-1}+3C^2\cdot C^{k-4}a_{k-2}\\=C^{k-2}(1+4a_{k-1}+3a_{k-2})=C^{k-2}a_k$$ which is valid, provided that ##k\geq 4##. Observing that the inequality holds for ##\|\Gamma_2\|=1## and ##\|\Gamma_3\|\leq 5C##, the inequality holds for all ##n\in\mathbb{N}## by induction.
We now return to the operator ##\gamma##: applying the inequality for ##\|\gamma\|## in terms of ##\Gamma_n##, we have that $$\|\gamma\|\leq\sum_{n=2}^\infty\frac{C^{n-2}a_n}{n!}$$ The right-hand side is equivalent to ##f(C)/C^2##, where ##f## is the unique solution to the differential equation ##f''(t)=e^t+4f'(t)+3f(t)## with ##f(0)=0, f'(0)=0##. It can be written as $$f(t)=\frac{1}{84}\left((7-\sqrt{7})e^{(2+\sqrt{7})t}+(7+\sqrt{7})e^{(2-\sqrt{7})t}-14e^t\right).$$ We now have the bound $$\|e^{X+Y}-e^Xe^Y\|\leq\frac{f(C)}{C^2}\|[Y,X]\|\,\|e^Y\|\\\leq\frac{f(C)}{C^2}\|[Y,X]\|e^{\|Y\|}\\\leq\frac{f(C)}{C^2}e^C\|[Y,X]\|.$$ In the case that ##\|X\|,\|Y\|\leq 1##, one let's ##C\rightarrow 1##: $$\|e^{X+Y}-e^Xe^Y\|\leq f(1)e\|[Y,X]\|\approx 5.01e\|[Y,X]\|\leq 6e^2\|[Y,X]\|.$$ Thus, we have improved significantly on the original inequality.