Math Physics: Lagrange Multiplier question

AI Thread Summary
The discussion revolves around a Lagrange Multiplier problem involving maximizing the volume of a projectile shaped like a circular cylinder with a conical end, given a specific surface area. The user expresses confusion about how to derive numerical answers for the dimensions (radius r, length l, and slope s) without knowing the actual surface area value. They have formulated the volume and surface area equations and attempted to use Lagrange multipliers but are struggling with the resulting algebraic complexity. The user has managed to express r, l, and s in terms of a parameter (lambda) but is uncertain how to derive the proportions needed for the solution. Clarification on how to proceed with these relationships to find numerical values is sought.
randomperson8
Messages
9
Reaction score
0

Homework Statement


Hello. I've been stuck on a Lagrange Multiplier problem. It's from Mathematical Methods in the Physical Sciences by Mary Boas 3rd edition pg. 222. The question is:

What proportions will maximize the volume of a projectile in the form of a circular cylinder with one conical end and one flat end, if the surface area is given?

Then there is a picture of a cylinder with a cone attached to the end. the circular base has radius r, cylinder has length l, and slope of the cone is marked s.

So I've started doing the problem, but something just doesn't seem right. How am I supposed to get an answer if I don't know what the surface area is? I looked in the back of the book and there are numerical answers for r, l, and s. How am I supposed to get actual number answers and not something just in terms of the surface area?

I really want to get this clarified before I go much further because the algebra is absolutely horrendous.

Homework Equations



The volume is V=pi*r^2*l+(1/3)*pi*r^2*(sqrt(s^2-r^2))
and the surface area is SA=pi*r*s+pi*r^2+2*pi*r*l

then to do lagrange multipliers you write F=V+b(SA)
(usually lambda is used instead of b)

The Attempt at a Solution



So then you get use the three partial derivatives and the surface area equation and get a system of 4 equations and solve.

I've solved them out to get values of r, l, and s as functions of lambda (b) and it was a huge mess. Now all that's left is to plug them into the surface area equation and somehow get numerical answers...? I'm really confused.
 
Last edited:
Physics news on Phys.org
bump. I've solved out the algebra and have r, l, and s in terms of lambda but I don't know how to get the proportions.

also I noticed something...I can get s in terms of r and l in terms of r and s. Dunno if that could help or anything though...
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top