Mathematical physics problem - heat conduction

asynja
Messages
15
Reaction score
0

Homework Statement


There's a radioactive isotope placed inside an iron sphere (R=2cm), which acts as a source of constant heat (P=1W). The isotope is uniformly distributed over a very thin spherical layer (r=1cm). How much higher is temperature in the center of the sphere compared to temperature on sphere's surface, which is constant all the time?

Homework Equations


spherical bessel functions?

The Attempt at a Solution


u(r,t)=\SigmaA_{n}(j_{0}(k_{n}r)-n_{0}(k_{n}r)e^{-k^{2}_{n}tD}
I tried to divide problem in two parts: First we have spherical waves going inwards - that's to get the temp. in the centre; Then, we have spherical waves going outwards, where we know what temp. is at r=1cm and search for temp. at r=2cm. But I haven't been able to form the right equations. Also, I am lost at how to perform normalisation to get A_{n} . Can anyone help?
 
Physics news on Phys.org
Spherical bessel functions aren't necessary here; the problem is much simpler. What is the governing equation for temperature in the sphere for r<1\,\mathrm{cm} and r>1\,\mathrm{cm}, and what are the boundary conditions?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top