thinktank2
- 9
- 0
If two ℝeal valued, non-identity matrices A (dimension MxN) and B (dimension NxN)
satisfy the condition A * B = A
Is there a name for the relationship between B and A ?
For example for: A = <br /> \left( \begin{array}{cc}<br /> \frac{1}{3} & \frac{2}{3} \end{array} \right), \quad B = \left( \begin{array}{cc}<br /> \frac{3}{5} & \frac{2}{5} \\<br /> \frac{1}{5} & \frac{4}{5} \end{array} \right) \quad A * B = \left( \begin{array}{cc}<br /> \frac{1}{3} & \frac{2}{3} \end{array} \right)<br />
My Observations:
My Question: Given a matrix B, how do we find A such that A*B=A ?
satisfy the condition A * B = A
Is there a name for the relationship between B and A ?
For example for: A = <br /> \left( \begin{array}{cc}<br /> \frac{1}{3} & \frac{2}{3} \end{array} \right), \quad B = \left( \begin{array}{cc}<br /> \frac{3}{5} & \frac{2}{5} \\<br /> \frac{1}{5} & \frac{4}{5} \end{array} \right) \quad A * B = \left( \begin{array}{cc}<br /> \frac{1}{3} & \frac{2}{3} \end{array} \right)<br />
My Observations:
- If such A exists for B, then for any real number k, k*A is also a solution for B
since (k*A)*B = k*(A*B)=k*A
implies, there will be infinite solutions for B.
. - <br /> p\to+\infty{\left( \begin{array}{cc}<br /> \frac{3}{5} & \frac{2}{5} \\<br /> \frac{1}{5} & \frac{4}{5} \end{array} \right)}^p = \left( \begin{array}{cc}<br /> \frac{1}{3} & \frac{2}{3} \\<br /> \frac{1}{3} & \frac{2}{3} \end{array} \right)<br />
My Question: Given a matrix B, how do we find A such that A*B=A ?