wcbryant87
- 14
- 0
Homework Statement
A running track consists of a rectangle with a semicircle at each end. If the perimeter is to be exactly 440 yards, find the dimensions (x and r) that maximize the area of the rectangle. [Hint The perimeter is 2x + 2\pir
Homework Equations
The Attempt at a Solution
Ok I attempted this twice and got the exact same answer, twice. Here is what I did.
First I set up the equation: 440 = 2x + 2\pir
I then set up the equation: Area (total) = \pir2 + 2rx where x is the length of the side of the field (not counting the semicircles) and r is the radius.
I solved for x from the first equation and came up with x = 220 - \pir
I then plugged the value of x into the second equation. Once I destrubuted it, I took the derivative and set it to zero and had 2r\pi + 440 - 4\pir = 0
Solving for r, I got 70.03. The answer in the back of the book is 110. What am I doing wrong?
I appreciate the help!