bomba923
- 759
- 0
I shoot a cannon from a cliff of height h, with an initial velocity v_0 and angle of elevation \theta. If h > 0, what \theta will maximize the cannon's range (how far the cannonball lands from base of the cliff), assuming no air resistance?
Ok...
The cannonball's height at any moment within its trajectory is
y = h + v_0 t\sin \theta - \frac{{gt^2 }}{2}
The cannon will land at ground zero, so I find that the time spent in the air is:
y = h + v_0 t\sin \theta - \frac{{gt^2 }}{2} = 0 \Rightarrow t = \frac{{v_0 \sin \theta + \sqrt {v_0^2 \sin ^2 \theta + 2gh} }}{g}
And therefore the range is:
x = v_0 \frac{{v_0 \sin \theta + \sqrt {v_0^2 \sin ^2 \theta + 2gh} }}{g} \cos \theta = \frac{{v_0 }}{g}\left( {v_0 \sin \theta \cos \theta + \left( {\cos \theta } \right)\sqrt {v_0^2 \sin ^2 \theta + 2gh} } \right)
*But, which \theta will maximize the range? Here, I simply find the roots of {dx}/{d\theta}:
\frac{{dx}}{{d\theta }} = \frac{{v_0 }}{g}\left[ {v_0 \cos 2\theta + \frac{{v_0^2 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta + 2gh} }} - \left( {\sin \theta } \right)\sqrt {v_0^2 \sin ^2 \theta + 2gh} } \right] = 0 \Rightarrow
v_0 \cos 2\theta \; + \; \frac{{v_0^2 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta + 2gh} }} \; - \; \left( {\sin \theta } \right)\sqrt {v_0^2 \sin ^2 \theta + 2gh} = 0 \Rightarrow
To simplify this equation, I can multiply both sides by
\frac{{\sqrt {v_0^2 \sin ^2 \theta + 2gh} }}{{v_0 \sin \theta }}
and continue to get
:
\left( {\cos 2\theta } \right)\sqrt {v_0^2 + 2gh\csc ^2 \theta } \; + \; v_0 \cos 2\theta \; + \; 2v_0^{ - 1} gh = 0 \Rightarrow - \sqrt {v_0^2 + 2gh\csc ^2 \theta } = v_0 \; + \; 2v_0^{ - 1} gh\sec 2\theta \Rightarrow
\csc ^2 \theta = 2\sec 2\theta \left( {1 + v_0^{ - 2} gh\sec 2\theta } \right)
Now, we can multiply both sides by \cos 2\theta, to get
\cot ^2 \theta - 1 = 2\left( {1 + v_0^{ - 2} gh\sec 2\theta } \right) \Rightarrow \cot ^2 \theta - 2v_0^{ - 2} gh\sec 2\theta = 3 \Rightarrow ??
And now I'm stuck; any ideas?
Ok...
The cannonball's height at any moment within its trajectory is
y = h + v_0 t\sin \theta - \frac{{gt^2 }}{2}
The cannon will land at ground zero, so I find that the time spent in the air is:
y = h + v_0 t\sin \theta - \frac{{gt^2 }}{2} = 0 \Rightarrow t = \frac{{v_0 \sin \theta + \sqrt {v_0^2 \sin ^2 \theta + 2gh} }}{g}
And therefore the range is:
x = v_0 \frac{{v_0 \sin \theta + \sqrt {v_0^2 \sin ^2 \theta + 2gh} }}{g} \cos \theta = \frac{{v_0 }}{g}\left( {v_0 \sin \theta \cos \theta + \left( {\cos \theta } \right)\sqrt {v_0^2 \sin ^2 \theta + 2gh} } \right)
*But, which \theta will maximize the range? Here, I simply find the roots of {dx}/{d\theta}:
\frac{{dx}}{{d\theta }} = \frac{{v_0 }}{g}\left[ {v_0 \cos 2\theta + \frac{{v_0^2 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta + 2gh} }} - \left( {\sin \theta } \right)\sqrt {v_0^2 \sin ^2 \theta + 2gh} } \right] = 0 \Rightarrow
v_0 \cos 2\theta \; + \; \frac{{v_0^2 \sin \theta \cos ^2 \theta }}{{\sqrt {v_0^2 \sin ^2 \theta + 2gh} }} \; - \; \left( {\sin \theta } \right)\sqrt {v_0^2 \sin ^2 \theta + 2gh} = 0 \Rightarrow
To simplify this equation, I can multiply both sides by
\frac{{\sqrt {v_0^2 \sin ^2 \theta + 2gh} }}{{v_0 \sin \theta }}
and continue to get

\left( {\cos 2\theta } \right)\sqrt {v_0^2 + 2gh\csc ^2 \theta } \; + \; v_0 \cos 2\theta \; + \; 2v_0^{ - 1} gh = 0 \Rightarrow - \sqrt {v_0^2 + 2gh\csc ^2 \theta } = v_0 \; + \; 2v_0^{ - 1} gh\sec 2\theta \Rightarrow
\csc ^2 \theta = 2\sec 2\theta \left( {1 + v_0^{ - 2} gh\sec 2\theta } \right)
Now, we can multiply both sides by \cos 2\theta, to get
\cot ^2 \theta - 1 = 2\left( {1 + v_0^{ - 2} gh\sec 2\theta } \right) \Rightarrow \cot ^2 \theta - 2v_0^{ - 2} gh\sec 2\theta = 3 \Rightarrow ??
And now I'm stuck; any ideas?
Last edited: