Take the output and connect across it several filament globe sockets with switches. That enables you to switch in a variable load during your tests. You should select and design your load by using the cold resistance of the filaments.
Your +/–70V represents a 140V DC output. That is insufficient to fully light a 230V filament lamp. The cold resistance of a globe will be about 1/10th that of a bright globe. We know that because resistance is proportional to absolute temperature. Room temperature is 300K while an incandescent filament will be closer to 3000K.
I have 240VAC and use an equation to estimate Rcold = 3600 / Filament wattage. So a 100W filament globe will have a cold resistance of 36R. 75W will have 48R. Each switched filament will be a current load. The maximum current will be less than Vout / Rcold since the filaments will be warm, radiating IR. It will not be the cold or the hot resistance, it will be something in between. You can always measure the current and voltage to determine the filament temperature.
You can buy 230V filament globes from 15W to 400W. I suggest 15W, 25W, 40W, 60W along with several 100W globes. You do not have to have them all plugged in at the same time. During early testing you might progressively switch in low values, later during testing they might all be 100 watt globes. 400W will only be needed at the end during reliability testing.
For 140Vdc output it would suggest …
watt, Rcold, Imax
15W, 240R, 0.6mA
25W, 144R, 1A
40W, 90R, 1.5A
60W, 60R, 2.3A
100W, 36R, 3.9A
400W, 9R, 15.5A. Avoid the 400W filament initially. Go for lower values, then several 100W globes.
The other thing you can do is put a light globe in series with the AC input during early testing. It should flash on momentarily while the storage capacitors initially charge, then go dull once running. If it stays on, then the load is too great or you have a short in the AC switching side of your inverter. The series globe should minimise the damage from catastrophic failures that take out multiple components. For example, if your half bridge fails, or one mosfet goes short, then the current through the remaining mosfet will be limited to below the series filament globe specification. You will clearly see if you have a problem.
Salvador said:
I wonder does the soft start capacitor on the sg3525 acts only as a time delay depending on the capacitance used or does bigger capacitance actually startup the mosfet driving IC's slower? like more gradually.
See this application note, page 5/13;
http://freedatasheets.com/downloads... Supply And Power Management SG3525 AN250.pdf
On page 6 is the equation for “turn on time”, t = Css * 2V / 50uA. With a bigger Css It will take longer to start.