Maximum charge on a spherical capacitor

AI Thread Summary
The discussion focuses on the relationship between charge, electric field, and potential in a spherical capacitor. The electric field generated by the charge on the inner sphere is expressed as E = (1/(4πε₀εᵣ))(Q/r²) and the potential difference is calculated using this field. The maximum electric field occurs at the surface of the inner sphere, leading to the conclusion that Q_max can be determined as Q_max = 4πε₀εᵣR₁²E_max. The conversation confirms the mathematical derivations and clarifies the significance of using potential in the context of electric fields. Overall, the discussion emphasizes the interplay between charge, electric field strength, and capacitor geometry.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A spherical capacitor has internal radius ##R_1## and external radius ##R_2##.
Between the spheres there is a dielectric with constant ##\varepsilon_r##.
If the maximum electric field that can be applied without electrical discharges occurring is ##E_{max}##, find the corresponding maximum charge that can be put on the plates.
Relevant Equations
##\Delta V=\int \vec{E}\cdot d\vec{l}##
The electric field is the one generated by the charge ##+Q## on the inner sphere of the capacitor, which generates a radial electric field ##\vec{E}=\frac{1}{4\pi\varepsilon_0}\frac{Q}{r^2}\hat{r}## which, due to the presence of the dielectric, become ##\vec{E}_d=\frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{Q}{r^2}\hat{r}## so ##\Delta V=\int \vec{E}_d\cdot d\vec{l}=\int_{R_1}^{R_2}\frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{Q}{r^2}\hat{r}\cdot d\vec{l}=\frac{Q}{4\pi\varepsilon_0\varepsilon_r}\frac{R_2-R_1}{R_1R_2}.##

So, ##E=\frac{\Delta V}{R_2-R_1}=\frac{Q}{4\pi\varepsilon_0\varepsilon_r}\frac{1}{R_1R_2}\leq E_{max}\Rightarrow \frac{Q_{max}}{4\pi\varepsilon_0\varepsilon_r}\frac{1}{R_1R_2}= E_{max}\Leftrightarrow Q_{max}=E_{max}4\pi\varepsilon_0\varepsilon_rR_1R_2##.

Does this make sense? Thanks
 
Physics news on Phys.org
Why are you using the potential at all? The limit is given in terms of the E field.
Where is it biggest?
 
hutchphd said:
Why are you using the potential at all? The limit is given in terms of the E field.
Where is it biggest?
##E## is biggest on the surface of the inner sphere so ##E_{max}=E(R_1)=\frac{Q_{max}}{4\pi\varepsilon_0\varepsilon_r R_1^2}\Leftrightarrow Q_{max}=4\pi\varepsilon_0\varepsilon_r R_1^2 E_{max}##. Is this correct?
 
Yes.
 
t
hutchphd said:
Yes.
Thank you.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top