Satvik Pandey
- 591
- 12
Homework Statement
In the figure shown below all surfaces are friction-less. Find the maximum extension in the spring(in meters) , if the blocks are initially at rest and the spring is initially in its natural length.
Details and Assumptions:
F=30N
k=700N/m
m=5kg
Homework Equations
The Attempt at a Solution
[/B]
Let the displacement of ##2m## be ##x## and that of ##m## be ##y##
Applying work energy theorem on block 1 (##2m##) and on block 2 we get
##Fx-\frac { 1 }{ 2 } k{ (x+y) }^{ 2 }=\frac { 1 }{ 2 } (2m){ v }_{ 1 }^{ 2 }##...(1)
##3Fy-\frac { 1 }{ 2 } k{ (x+y) }^{ 2 }=\frac { 1 }{ 2 } (m){ v }_{ 2 }^{ 2 }##....(2)
##{ X }_{ COM\quad }=\frac { ml }{ 3m } ## Position of CoM initially.
##{ X }_{ COM }=\frac { -2mx+m(L+y) }{ 3m } ## Position of CoM finally.
##\triangle { X }_{ COM }=\frac { my-2mx }{ 3m } ##
##{ a }_{ com }=\frac { 2F }{ 3m } ##
##{ v }_{ com }=\sqrt { 2\frac { 2F }{ 3m } \times \frac { my-2mx }{ 3m } } ##.....(3)
Elongation in the string will be maximum when velocity of block 1 would be zero.
Putting this in (1) I got
##3x=35(x+y)##...(4)
On solving eq(2) and substituting eq(4) I got
##V_{2}=\sqrt(36y-12x)##...(5)
As ##m_{1}v_{1}+m_{2}v_{2}=(m_{1}+m_{2})V_{com}##
So ##3V_{com}=v_{2}##
Using eq(5) and (4) I got
##-y=3x##
Am I correct till here?
Attachments
Last edited: