Maximum Power dissipated at load resistor

  • Thread starter Thread starter Bling Fizikst
  • Start date Start date
  • Tags Tags
    Power Resistance
AI Thread Summary
Maximum power is dissipated when the load resistance equals the Thevenin resistance, following the formula P ≤ V_th² / 4R_th. The discussion involved applying a star-delta transformation and using the loop current method to derive expressions for current and Thevenin voltage. Confusion arose regarding the treatment of the battery and the internal resistance in the circuit. It was clarified that the battery should be short-circuited rather than removed, which led to the correct calculation of Thevenin resistance. The participant corrected their mistake and successfully arrived at the right answer.
Bling Fizikst
Messages
119
Reaction score
16
Homework Statement
refer to the image
Relevant Equations
refer to the image
Screenshot 2024-10-03 203839.png

So , max power is dissipated when the load resistance and thevenin resistance becomes equal such that $$P\leq \frac{V_{\text{th}}^2}{4R_{\text{th}}}$$
Then i applied the 'star delta' transformation by converting the 'delta' ABC to 'star' ABC .
WhatsApp Image 2024-10-03 at 20.48.37_60cee29f.jpg

From there , by loop current method , i got $$i=\frac{\epsilon}{\frac{5R}{3}+r}$$ (assuming the other ##\frac{R}{3}## is redundant)
Hence, $$V_{\text{th}}=i\cdot \frac{R}{3}=\frac{\epsilon R}{5R+3r}$$
Now , by removing the battery ##\epsilon## , i got ##R_{\text{th}}=\frac{5R}{3}+r##

Computing , ##P_{\max}## using these values gives the wrong answer . Not sure where i went wrong . I have confusions regarding the value of ##V_{\text{th}}## though
 
Last edited by a moderator:
Physics news on Phys.org
Is ##r## a resistor??? IDK, it's strange to see two batteries in series if they aren't modeling something about two different batteries. It's even stranger to use that schematic symbol for a resistor. I'd guess it's a battery (ideal voltage source, really).
 
Bling Fizikst said:
Now , by removing the battery ##\epsilon## , i got ##R_{\text{th}}=\frac{5R}{3}+r##
You don't remove the battery, you short-circuit it, i.e. replace it with a wire. Then you find the resistance between the load terminals. Check you have done this correctly.

Edit. To be more precise, I should have said short-circuit the emf: the battery's internal resisstance should still be part of the circuit - it doesn't get shorted-out.
 
Last edited:
Steve4Physics said:
You don't remove the battery, you short-circuit it, i.e. replace it with a wire. Then you find the resistance between the load terminals. Check you have done this correctly.
Yeah!!! i made that silly error of replacing the battery with open circuit . I have arrived at the correct answer now . Thanks!
 
  • Like
Likes Steve4Physics and berkeman
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top