What I am going to do is solve this problem using the method that I am familiar with and that I know works. I will solve it for our two cases, one with ##\tau_{xy}=+25## and the other with ##\tau_{xy}=-25##.
Case of ##\tau_{xy}=+25##
First calculate ##\tan{2\theta_p}##:
$$\tan{2\theta_p}=\frac{2\tau_{xy}}{(\sigma_x-\sigma_y)}=\frac{(2)(25)}{(-80-50}=-0.38462$$So, $$2\theta_p=-21.04\ degrees$$
Next calculate the average of ##\sigma_x## and ##\sigma_y##:
$$\frac{\sigma_x+\sigma_y}{2}=\frac{-80+50}{2}=-15$$
Next calculate radius of Mohr's circle:$$R=\tau_{max}=\sqrt{\left(\frac{(\sigma_x-\sigma_y)}{2}\right)^2+\tau_{xy}^2}=\sqrt{(-65)^2+(25)^2}=69.6$$
Next, use the following equations to calculate the normal and shear stress components on a plane normal to a unit vector pointing in the direction of a the angle ##\theta## measured counterclockwise relative to the x axis:
$$\sigma_n=\left(\frac{\sigma_x+\sigma_y}{2}\right)+\frac{(\sigma_x-\sigma_y)}{2}\cos{2\theta}+\tau_{xy}\sin(2\theta)$$
$$\sigma_t=-\frac{(\sigma_x-\sigma_y)}{2}\sin{2\theta}+\tau_{xy}\cos(2\theta)$$
The minimum principal stress occurs at ##2\theta=2\theta_p=## = -21.04 degrees. The value is -84.6.
The maximum principal stress occurs at ##2\theta=2\theta_p+180## =158.96 degrees. The value is +54.63.
The following is a table of values for ##2\theta## (degrees), ##\sigma_n##, and ##\sigma_t##:
View attachment 110530
The sequence of values is in the clockwise direction.
I changed my mind about doing tau=-25. This has gotten too time-consuming. I leave that case for you.