Orion1
- 961
- 3
What is the solution in Gauss' law for a magnetic monopole based upon Maxwell's equations?
Maxwell's equations:
\Phi_E = \oint E \cdot dA = \frac{q_e}{\epsilon_0}
\Phi_B = \oint B \cdot dA = 0
\epsilon_e = \oint E \cdot ds = - \frac{d \Phi_B}{dt}
\epsilon_b = \oint B \cdot ds = \mu_0 \left(I_c + \epsilon_0 \frac{d \Phi_E}{dt} \right)
Gauss' magnetic monopole:
\frac{\Phi_E}{\Phi_B} = c^2 \; \; \; q_b = q_e
\Phi_B = \oint B \cdot dA = \frac{\Phi_E}{c^2} = \mu_0 q_b
\boxed{\Phi_B = \oint B \cdot dA = \mu_0 q_b}
Is this solution correct?
[/Color]
Reference:
http://en.wikipedia.org/wiki/Magnetic_monopole
http://www.physics.nmt.edu/~raymond/classes/ph13xbook/node172.html
Last edited by a moderator: