A Measure of non-periodicity of almost periodic functions

AI Thread Summary
Almost periodic functions can be expressed as Fourier series with incommensurable frequencies, and a proposed integral criterion could measure their degree of non-periodicity. This criterion suggests that the integral of an almost periodic function over its almost period differs from zero, providing a dimensionless quantity that characterizes non-periodicity. The evaluation of periodicity is contingent on the chosen limits for integration, as the Fourier transform relies on these conditions. In practical applications, this concept is often related to "jitter" in electronic signals, which is analyzed statistically and may involve assumptions about noise types. Understanding the spectral width of frequencies in a Fourier spectrum is crucial for interpreting almost periodic functions and their non-periodic characteristics.
reterty
Messages
30
Reaction score
2
As is well known, almost periodic functions can be represented as a Fourier series with incommensurable (non-multiple) frequencies https://en.wikipedia.org/wiki/Almost_periodic_function. It seems to me that I came up with an integral criterion for the degree of non-periodicity. The integral of a periodic function (not including the constant component of its Fourier series), with respect to the argument for the main period, is equal to zero. In the theory of almost periodic functions, the concept of an almost period is introduced. So, a similar integral of an almost periodic function for almost a period will be different from zero. Its value divided by this almost period and the largest of the amplitudes of the harmonics of the Fourier series will be a dimensionless quantity characterizing the degree of non-periodicity of this almost periodic function. Is my criterion correct and useful?
 
Mathematics news on Phys.org
The problem with "almost periodic" is that those functions are essentially undefined with such a broad and simple description.

In general, you will have to define over what conditions and how you will do the evaluation. The Fourier transform assumes periodicity based on the limits you choose to integrate over. It can not tell you about any periodicity on the order of 1 day, if you only collect data for 1 minute. So, I think just defining your window and looking at the Fourier transform is the only thing we can do. Then for different circumstances, you'll get different spectral data out, which may still be hard to interpret.

In practice, this subject is most commonly described as "jitter" of electronic signals. It is an extremely well studied and hugely important subject. The treatment tends to be statistical in nature. People invariably end up making some (powerful) assumptions about the type of deviation, like "gaussian noise", for example, to allow them to analyze the more general cases. Do some searching about jitter for more information. IRL, we would look at the spectral width of the "almost periodic" frequency out of a Fourier series or spectrum analyzer. This is also called "phase noise".
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top