Measure the tensile strength using Young’s Modulus

AI Thread Summary
The discussion focuses on measuring tensile strength using Young’s Modulus (E) for steel and brass, with a formula provided for calculating E. The user seeks clarification on the relationship between the cross-sectional area and length in their calculations, noting that steel's high Young's Modulus makes it preferable for structural applications due to its stiffness, while brass is more flexible. There is a distinction made between material stiffness, which considers Young's Modulus, and component stiffness, which also factors in size and shape. The user inquires about Young's Modulus values for wood types, specifically mahogany and parana pine, and how these values compare to actual results. The conversation concludes with insights on how altering a material's shape can affect its stiffness, emphasizing that Young's Modulus itself remains constant.
cmgames
Messages
12
Reaction score
0
Hi there, I am currently looking to measure the tensile strength using Young’s Modulus for steel and brass.

My results I have obtained are comparable with published values of E. My question is regarding the formulae, the one I used was: E = F/x X l/a

Where a is the original cross section of the steel and brass. The cross section measured was 8. The length was 50, however it was said that it was equal to 1 because the cylinder using pie r 2 of 50 would be approximating to 8 and therefore would be to one. I don’t really have much understanding of this, could you explain it to me.

Also regarding the application of steel and brass as a structural material. I have found that due to the high Young’s Modulus, steel is more desirable in structures as a high YM means it can span larger distances and is stiffer. Whereas brass is more flexible and so as a appropriate a resource than steel. Is there any other reasons for steel as the main application rather than brass?

I am looking at the difference between material stiffness and component stiffness. It is my understanding that component stiffness measure is by YM only. Whereas material stiffness tests using YM and also the size and shape of the material. Is this correct and is there any other differences between the two?


Lastly, I can't seem to find the YM values for wood – mahogany and parana pine. Where would I be able to find these published values and what would these values tell us when compared to actual results
 
Physics news on Phys.org
cmgames said:
Hi there, I am currently looking to measure the tensile strength using Young’s Modulus for steel and brass.

My results I have obtained are comparable with published values of E. My question is regarding the formulae, the one I used was: E = F/x X l/a

Where a is the original cross section of the steel and brass. The cross section measured was 8. The length was 50, however it was said that it was equal to 1 because the cylinder using pie r 2 of 50 would be approximating to 8 and therefore would be to one. I don’t really have much understanding of this, could you explain it to me.
looks like perhaps you measured the diameter of the cylinder as 8 units in which case its area is about 50 square units. l/a =50/50 = 1.

Also regarding the application of steel and brass as a structural material. I have found that due to the high Young’s Modulus, steel is more desirable in structures as a high YM means it can span larger distances and is stiffer. Whereas brass is more flexible and so as a appropriate a resource than steel. Is there any other reasons for steel as the main application rather than brass?
steel, concrete, wood, and aluminum are the most common structural materials. I don't know much about brass, but it's probably more expensive than steel. Aluminum has a lower modulus than steel, but its strength is for certain types greater than that of certain steels, so it has advantages in cases where deflection is not a major concern, and especially since it is so much lighter in weight than steel.

I am looking at the difference between material stiffness and component stiffness. It is my understanding that component stiffness measure is by YM only. Whereas material stiffness tests using YM and also the size and shape of the material. Is this correct and is there any other differences between the two?
I'm not sure of the terminology, but I think you mean that where YM is a measure of the stiffness of the material, the actual deformation of a given component depends upon its size and shape, i.e., like in your problem, if the area is bigger or the length is shorter, the deformation is lower.


Lastly, I can't seem to find the YM values for wood – mahogany and parana pine. Where would I be able to find these published values and what would these values tell us when compared to actual results
I suppose a web search will get you what you need...southern yellow pine has a YM of about 1600ksi (vs. 30000ksi for steel and 10000ksi for aluminum...I hope you're working in US units). Wood is a funny actor...deflections are oft greater than theory predicts.
 
From my results i have found that wood and brass is not inherently stiff. What examples are there of using wood and brass, that by changing it's shape or distribution would make it stiffer?
 
The modulus will change inversely to the cross-sectional area. So, if you change the shape in such a way that the cross-section decreases, the modulus will increase. That is to say it will become stiffer.
 
cmgames said:
From my results i have found that wood and brass is not inherently stiff. What examples are there of using wood and brass, that by changing it's shape or distribution would make it stiffer?
Young's modulus (E) of a material is what it is; you can't change its 'inherent stiffness', if that's how you define E. You can change the 'component stiffness' only by changing the size, shape, length, or boundary conditions at supports, of the material, by say increasing its cross section area, shortening its length, increasing its geometric moment of inertia, fixing its supports, etc. For tension/compression components, stiffness is proportional to AE/L. If you double its area, you double its stiffness, for example. In bending, stiffness is proportional to EI/L^3.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top