Mechanical vibrations: floating apple

AI Thread Summary
The calculations for the motion of an apple floating in water were verified, confirming that at one-quarter of the period (T), the position is 0 m, the velocity is -0.168 m/s, and the acceleration is 0 m/s². At half the period, the position is -0.02 m, the velocity is 0 m/s, and the acceleration is approximately 0.444 m/s², derived from the formula a = -ω²x. The calculations utilized the equations of simple harmonic motion, with parameters set for amplitude and period. Overall, the calculations appear to be correct and consistent with the principles of mechanical vibrations.
vxr
Messages
25
Reaction score
2
Homework Statement
An apple floats in a barrel of water. If you lift the apple above its floating level by ##h = 0.02m## and release it, it bobs up and down with a period of ##T = \frac{3}{4}s##. Assuming that the motion is simple harmonic, find the position ##x##, velocity ##v## and acceleration ##a## of the apple at the times corresponding to ##1/4## and ##1/2## of period ##T##.
Relevant Equations
##x = Acos(\omega t)##
Can someone double check my calculations? I will skip ##\theta## shift angle in all calculations for simplicity.

##x(t) = Acos(\omega t) \quad \land \quad \omega = \frac{2\pi}{T} \quad \land \quad A = \frac{1}{50}m = h##

1.1: ##x(\frac{1}{4}T)## = ?

##x(\frac{1}{4}T) = Acos(\frac{2\pi}{T} \frac{T}{4}) = Acos(\frac{\pi}{2}) = 0m##

1.2: ##x(\frac{1}{2}T)## = ?

##x(\frac{1}{2}T) = Acos(\frac{2\pi}{T} \frac{T}{2}) = Acos(\pi) = \frac{1}{50}cos(\pi) = -\frac{1}{50}m##

--

2.1: ##v(\frac{1}{4}T)## = ?

##v = \frac{dx}{dt} = \frac{d}{dt} \Bigg( Acos(\omega t) \Bigg) = -A \omega sin (\omega t)##

##v(\frac{1}{4}T) = \frac{-2A \pi}{T} sin \Big( \frac{2\pi}{t} \frac{T}{4} \Big) = \frac{-2A \pi}{\frac{3}{4}} sin \Big( \frac{\pi}{2} \Big) = \frac{-8A \pi}{3} = -0.168 \frac{m}{s}##

2.2: ##v(\frac{1}{2}T)## = ?

##v(\frac{1}{2}T) = \frac{-2A \pi}{\frac{3}{4}} sin \Big( \frac{2\pi}{T} \frac{T}{2} \Big) = \frac{-8A \pi}{3} sin (\pi) = 0 \frac{m}{s}##

--

3.1: ##a(\frac{1}{4}T)## = ?

##a = \frac{dv}{dt} = \frac{d^2 x}{dt^2} = \frac{d}{dt} \Bigg( -A\omega sin(\omega t)\Bigg) = -A\omega^2 cos(\omega t) = -\omega^2 x##

##a(t) = -\omega^2 x(t)##

##\Longrightarrow a(\frac{1}{4}T) = 0 \frac{m}{s^2}##

3.2: ##a(\frac{1}{2}T)## = ?

##a(\frac{1}{2}T) = -\omega^2 * (-\frac{1}{50}m) = \omega^2 \frac{1}{50}##

##\begin{cases} a(\frac{1}{2}T) = \omega^2 \frac{1}{50} \\ \omega = \frac{2\pi}{T}\end{cases} \Longrightarrow a(\frac{1}{2}T) = \frac{1}{50} \frac{4\pi^2}{T^2} = \frac{4\pi^2}{50} \frac{1}{(\frac{3}{4})^2} = \frac{4\pi^2}{50} \frac{16}{9} = \frac{64 \pi^2}{450} \frac{m}{s^2}##
 
Physics news on Phys.org
vxr said:
Problem Statement: An apple floats in a barrel of water. If you lift the apple above its floating level by ##h = 0.02m## and release it, it bobs up and down with a period of ##T = \frac{3}{4}s##. Assuming that the motion is simple harmonic, find the position ##x##, velocity ##v## and acceleration ##a## of the apple at the times corresponding to ##1/4## and ##1/2## of period ##T##.
Relevant Equations: ##x = Acos(\omega t)##

Can someone double check my calculations? I will skip ##\theta## shift angle in all calculations for simplicity.

##x(t) = Acos(\omega t) \quad \land \quad \omega = \frac{2\pi}{T} \quad \land \quad A = \frac{1}{50}m = h##

1.1: ##x(\frac{1}{4}T)## = ?

##x(\frac{1}{4}T) = Acos(\frac{2\pi}{T} \frac{T}{4}) = Acos(\frac{\pi}{2}) = 0m##

1.2: ##x(\frac{1}{2}T)## = ?

##x(\frac{1}{2}T) = Acos(\frac{2\pi}{T} \frac{T}{2}) = Acos(\pi) = \frac{1}{50}cos(\pi) = -\frac{1}{50}m##

--

2.1: ##v(\frac{1}{4}T)## = ?

##v = \frac{dx}{dt} = \frac{d}{dt} \Bigg( Acos(\omega t) \Bigg) = -A \omega sin (\omega t)##

##v(\frac{1}{4}T) = \frac{-2A \pi}{T} sin \Big( \frac{2\pi}{t} \frac{T}{4} \Big) = \frac{-2A \pi}{\frac{3}{4}} sin \Big( \frac{\pi}{2} \Big) = \frac{-8A \pi}{3} = -0.168 \frac{m}{s}##

2.2: ##v(\frac{1}{2}T)## = ?

##v(\frac{1}{2}T) = \frac{-2A \pi}{\frac{3}{4}} sin \Big( \frac{2\pi}{T} \frac{T}{2} \Big) = \frac{-8A \pi}{3} sin (\pi) = 0 \frac{m}{s}##

--

3.1: ##a(\frac{1}{4}T)## = ?

##a = \frac{dv}{dt} = \frac{d^2 x}{dt^2} = \frac{d}{dt} \Bigg( -A\omega sin(\omega t)\Bigg) = -A\omega^2 cos(\omega t) = -\omega^2 x##

##a(t) = -\omega^2 x(t)##

##\Longrightarrow a(\frac{1}{4}T) = 0 \frac{m}{s^2}##

3.2: ##a(\frac{1}{2}T)## = ?

##a(\frac{1}{2}T) = -\omega^2 * (-\frac{1}{50}m) = \omega^2 \frac{1}{50}##

##\begin{cases} a(\frac{1}{2}T) = \omega^2 \frac{1}{50} \\ \omega = \frac{2\pi}{T}\end{cases} \Longrightarrow a(\frac{1}{2}T) = \frac{1}{50} \frac{4\pi^2}{T^2} = \frac{4\pi^2}{50} \frac{1}{(\frac{3}{4})^2} = \frac{4\pi^2}{50} \frac{16}{9} = \frac{64 \pi^2}{450} \frac{m}{s^2}##
Looks right.
 
  • Like
Likes vxr
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top