Mechanics Problem: Finding the speed at the center of a ring

morrisj753
Messages
11
Reaction score
0

Homework Statement


A homogeneous ring lays horizontally on two identical parallel rails. The first rail moves parallel to itself, with a constant speed v; the second rail is at rest. The angular distance between the ring-rail contact points, as seen from the center of the ring, is 2α for the first rail, and 2β for the second rail, see figure. Assuming that α << 1 and β = π/3, find the speed of the center of the ring.
2jer0ci.jpg

(and also, the first rail intersects the ring at two points)

Homework Equations


τ (torque) = F x r

The Attempt at a Solution


I wasn't quite sure where to start but I thought I might be able to use a torque balance to find the frictional forces, though I'm not sure where to go from there, or whether I am actually taking the correct approach.
 
Physics news on Phys.org
I wasn't quite sure where to start but I thought I might be able to use a torque balance to find the frictional forces
That looks like a good idea.
Afterwards, you can consider rotation around a different axis to get the speed (and angular velocity) of the ring.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top