Sink41
- 21
- 0
1. A parachutist of mass m falls freely until his parachute opens. When it is open he experiences an upward resistance kv where v is his speed and k is a positive constant.
The parachutist falls from rest freely under gravity for a time \frac{m}{2k} and then opens his parachute. Prove that the total distance he has fallen when his velocity is \frac{3mg}{4k} is \frac{m^2 g}{8 k^2} (8 \ln2 - 1)
2.
a = v \frac{dv}{ds}
v^2 = u^2 + 2 a s
v = u + a t
3. Until parachute is opened:
t = \frac{m}{2k}
a = g
u = 0v = u + a t
v = \frac{mg}{2k}v^2 = u^2 + 2 a s
\frac{m^2 g^2}{4 k^2} = 2 g s
\frac{m^2 g}{8 k^2} = s
When parachute is opened:
Force downwards ma = mg - kv
m v \frac{dv}{ds} = mg - kv
\int \frac{mv}{mg - kv} dv = \int dsSubstitution: u = mg - kv
\frac{du}{dv} = -k
v = \frac{u - mg}{-k}\int \frac{mv}{-k (mg - kv)} du = \int ds
\int \frac{m(u - mg)}{u} du = \int ds
\int m - \frac{m^2 g}{u} du = \int ds
mu - m^2 g \ln u = \int ds
m (mg - kv) - m^2 g \ln (mg - kv) = s + c where c is a constant
To work out constant:
v = \frac{mg}{2k}
s = \frac{m^2 g}{8 k^2}m^2 g - mk \frac{mg}{2k} - m^2 g \ln ( mg - \frac{kmg}{2k} ) = \frac{m^2 g}{8 k^2} + c
\frac{m^2 g}{2} - m^2 g \ln ( \frac{mg}{2} ) - \frac{m^2 g}{8 k^2} = c
Putting c back into equation:
m^2 g - mkv - m^2 g \ln ( mg - kv ) - \frac{m^2 g}{2} + m^2 g \ln ( \frac{mg}{2} ) + \frac{m^2 g}{8 k^2} = s
Putting in value of v:
- \frac{m^2 g}{4} + m^2 g \ln 2 + \frac{m^2 g}{8 k^2} = s
\frac{m^2 g}{8} ( 8 \ln 2 - 2 + \frac{1}{k^2} ) = sSo i have wrong answer where have i gone wrong?
The parachutist falls from rest freely under gravity for a time \frac{m}{2k} and then opens his parachute. Prove that the total distance he has fallen when his velocity is \frac{3mg}{4k} is \frac{m^2 g}{8 k^2} (8 \ln2 - 1)
2.
a = v \frac{dv}{ds}
v^2 = u^2 + 2 a s
v = u + a t
3. Until parachute is opened:
t = \frac{m}{2k}
a = g
u = 0v = u + a t
v = \frac{mg}{2k}v^2 = u^2 + 2 a s
\frac{m^2 g^2}{4 k^2} = 2 g s
\frac{m^2 g}{8 k^2} = s
When parachute is opened:
Force downwards ma = mg - kv
m v \frac{dv}{ds} = mg - kv
\int \frac{mv}{mg - kv} dv = \int dsSubstitution: u = mg - kv
\frac{du}{dv} = -k
v = \frac{u - mg}{-k}\int \frac{mv}{-k (mg - kv)} du = \int ds
\int \frac{m(u - mg)}{u} du = \int ds
\int m - \frac{m^2 g}{u} du = \int ds
mu - m^2 g \ln u = \int ds
m (mg - kv) - m^2 g \ln (mg - kv) = s + c where c is a constant
To work out constant:
v = \frac{mg}{2k}
s = \frac{m^2 g}{8 k^2}m^2 g - mk \frac{mg}{2k} - m^2 g \ln ( mg - \frac{kmg}{2k} ) = \frac{m^2 g}{8 k^2} + c
\frac{m^2 g}{2} - m^2 g \ln ( \frac{mg}{2} ) - \frac{m^2 g}{8 k^2} = c
Putting c back into equation:
m^2 g - mkv - m^2 g \ln ( mg - kv ) - \frac{m^2 g}{2} + m^2 g \ln ( \frac{mg}{2} ) + \frac{m^2 g}{8 k^2} = s
Putting in value of v:
- \frac{m^2 g}{4} + m^2 g \ln 2 + \frac{m^2 g}{8 k^2} = s
\frac{m^2 g}{8} ( 8 \ln 2 - 2 + \frac{1}{k^2} ) = sSo i have wrong answer where have i gone wrong?
Last edited: