Metal sphere on a thread in a horizontal electric field

AI Thread Summary
A charged metal sphere suspended on a thread makes a 45-degree angle with a horizontal electric field. When 40% of the charge is removed from the sphere, the new angle can be calculated using the relationship between gravitational and electric forces. The equations derived show that the tangent of the new angle is proportional to the remaining charge, leading to an angle of approximately 59 degrees after the charge reduction. The discussion emphasizes the importance of maintaining significant figures in the final answer. The final result is confirmed as 59.04 degrees, which can be expressed as 59 degrees for clarity.
steroidjunkie
Messages
16
Reaction score
1

Homework Statement



Charged metal sphere hanging on an isolated thread of negligible mass is put in a homogeneous horizontal electric field so that the thread makes a 45 degree angle with the el. field. What angle does the thread with the sphere close with the el. field after we remove 40% of the charge from the sphere?

Homework Equations



1. ##F_g=mg##
2. ##F_g=T \cdot \sin(45)##
3. ##F_{el}=T \cdot \cos (45)##

I have provided image of force diagram.

The Attempt at a Solution



I can substitute ##F_g## from equation 1 into equation 2 and get:
##mg=T \cdot \sin(45)##

Then I find expression for T in equation 3:
##T=\frac{F_{el}}{\cos (45)}##

and substitute it into second equation:
##mg=\frac{F_{el}}{\cos (45)} \cdot \sin(45)##
##mg=F_{el} \cdot \tan(45)##

I can express electric force as a product of electric field and charge of sphere:
##mg=q \cdot E \cdot \tan(45)##

I haven't gotten further than this. How do I show what happens with an angle when the charge is reduced 40%?
 

Attachments

  • img.jpg
    img.jpg
    11.1 KB · Views: 432
Physics news on Phys.org
steroidjunkie said:
I can express electric force as a product of electric field and charge of sphere:
##mg=q \cdot E \cdot \tan(45)##
This equation looks good. Note that your derivation would work for any angle, not just for 45 degrees. If ##\theta_2## is the angle you are looking for, how would you write your equation with 45 degrees replaced by ##\theta_2##?
 
Well, I could substitute ##\Theta_2##:
##mg=q \cdot E \cdot \tan(\Theta_2)##
##\tan(\Theta_{2})=\frac{mg}{q \cdot E}##
##\Theta_2=\arctan \frac{mg}{q \cdot E}##

What do I do now? Do I just say that ##\Theta_2## is 60% of 45 degrees which is 27 degrees?
 
steroidjunkie said:
Well, I could substitute ##\Theta_2##:
##mg=q \cdot E \cdot \tan(\Theta_2)##
##\tan(\Theta_{2})=\frac{mg}{q \cdot E}##
##\Theta_2=\arctan \frac{mg}{q \cdot E}##
OK. Here ##q## is the charge corresponding to ##\theta_2##.

What do I do now? Do I just say that ##\Theta_2## is 60% of 45 degrees which is 27 degrees?
No. You have two equations, one for the initial charge ##q_1## and one for the final charge ##q_2##. Combine them to find ##\theta_2##.
 
OK, than:

##\tan 45=\frac{m \cdot g}{q_1 \cdot E}##
##\tan \Theta_2=\frac{m \cdot g}{q_2 \cdot E}##

##q_1=q, q_2=q_1-40\%=q-0.4q=0.6q####\tan 45=\frac{m \cdot g}{q \cdot E}##
##\tan \Theta_2=\frac{m \cdot g}{0.6 \cdot q \cdot E}##

##q \cdot \tan 45=\frac{m \cdot g}{E}##
##0.6 q \cdot \tan \Theta_2=\frac{m \cdot g}{E}##

I equate the two equations:
##0.6 q \cdot \tan \Theta_2=q \cdot \tan 45##

##\tan \Theta_2=\frac{\tan 45}{0.6}##

##\tan \Theta_2=\frac{1}{0.6}##

##\tan \Theta_2=\frac{5}{3}##

##\Theta_2=59^{\circ} 04'##

I'm sorry for writing minutes the way I did. I couldn't find a proper code.
 
OK. Good work.

My calculator gives the answer as a decimal number of 59.04o.
.04 degree is about 2 minutes.

Considering that the 45 degrees is given to 2 significant figures, it would probably be best to express the answer as 59o or maybe 59.0o.
 
  • Like
Likes steroidjunkie
You're right. It's 2 minutes, and not 4 minutes. Thank you very much for helping me.
 
Back
Top