Metric for rating funtion accuracy from R^m to R.

AI Thread Summary
The discussion focuses on finding a metric to evaluate the accuracy of functions mapping from R^m to R, specifically for a program generating pseudo-random expressions. The user seeks methods to compare expected outputs against actual outputs, with a preference for metrics that yield a single real number. The sum of squared errors is mentioned as a common method, but the user opts for the sum of absolute errors to avoid underestimating the performance of poor solutions due to the randomness of the generated functions. There is some confusion regarding the nature of the data, particularly whether it contains significant noise. Overall, the conversation revolves around selecting an appropriate accuracy metric for function evaluation.
TylerH
Messages
729
Reaction score
0
I'm writing program in which I generate pseudo random expressions with the hope of finding one that closely approximates the given data set. The functions map from R^m (an m-tuple of reals) to a real. What I need is a way to rate the functions by their accuracy. Are there any known methods for doing this? Maybe something from stats.

Ideally this would be a method that would take a list of expected outputs and actual outputs and return a real number. A uniform distribution would be good, but not required.
 
Mathematics news on Phys.org
A standard thing is to do something like
\sum_{j} \left( y_j - z_j \right)^2

where the yj are the actual data that you measured, and the zj are the predictions that you made (this is called the sum of squared errors). It's used mostly because it's easy to work with sums of squares when doing analytical calculations (like trying to minimize it). If you're doing a numerical method, people will often instead use the sum of the absolute values of the errors, especially if they consider the property "makes sure there are no significant outliers at the cost of being off by slightly more on average" to be a negative quality
 
I went with the abs value one because, by nature of the fact they're all random, there are going to be a lot of bad solutions. So I thought a metric which doesn't underestimate their badness would be better. Thanks.
 
TylerH said:
I went with the abs value one because, by nature of the fact they're all random, there are going to be a lot of bad solutions. So I thought a metric which doesn't underestimate their badness would be better. Thanks.

I don't really understand what this post is trying to get at... do you mean that your data has a lot of noise in it?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top