Min Max problem: the shortest distance for a light ray

Click For Summary

Homework Help Overview

The discussion revolves around a minimum/maximum problem related to finding the shortest distance for a light ray, involving concepts from algebra and inequalities, particularly the Arithmetic Mean-Geometric Mean (AM-GM) inequality.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the use of inequalities to prove relationships between distances and coordinates. There is an attempt to apply AM-GM and AM-QM inequalities, with some questioning the validity of assumptions regarding the equality of variables in different setups.

Discussion Status

Participants are actively engaging with the problem, offering various approaches and questioning the assumptions made. Some guidance has been provided regarding the application of inequalities, but there is no explicit consensus on the path forward.

Contextual Notes

There are discussions about the constraints of using the same values for different setups and the implications of proving certain inequalities without calculus.

Karol
Messages
1,380
Reaction score
22

Homework Statement


Capture.JPG
Capture.JPG
Capture2.JPG


Homework Equations


Minimum/Maximum occurs when the first derivative=0
GM≤AM: ##~\sqrt{xy}\leq\frac{x+y}{2}##

The Attempt at a Solution


Capture.JPG
[/B]
If the sum of squares of the distances (setup 2) in an arbitrary point is bigger than the sum of the squares of the shortest distances (setup 1, the mid point between A and B) then the distance from an arbitrary point is also bigger. i want to prove without calculus that:
$$2s^2+x^2+y^2\geq 2s^2+2\left[ \frac{x+y}{2} \right]~\rightarrow~\frac{3}{2}(x^2+y^2)\geq xy$$
I want to use GM≤AM so i take the square root of what i need to prove, and i need to prove:
$$\sqrt{1.5}\sqrt{x^2+y^2}\geq\sqrt{xy}$$
I know ##~\sqrt{xy}\leq\frac{x+y}{2}~## so i have to prove:
$$\sqrt{xy}\leq\frac{x+y}{2}\leq\sqrt{1.5}\sqrt{x^2+y^2}$$
And it remains that i have to prove:
$$\frac{x+y}{2}\leq\sqrt{1.5}\sqrt{x^2+y^2}$$
I know ##~\sqrt{(x+y)^2}=\sqrt{x^2+y^2+2xy}\leq\sqrt{x^2+y^2}~## but it doesn't help since i need to insert an inequality
on the left of ##~\sqrt{1.5}\sqrt{x^2+y^2}~## and not on the right side.
 

Attachments

  • Capture.JPG
    Capture.JPG
    10.7 KB · Views: 720
  • Capture2.JPG
    Capture2.JPG
    2.8 KB · Views: 688
  • Capture.JPG
    Capture.JPG
    9.7 KB · Views: 476
Physics news on Phys.org
You can use AM-QM
 
AM-QM, in my case, is exactly GM≤AM: ##~~\sqrt{xy}\leq\frac{x+y}{2}##
It doesn't help in proving ##~\frac{x+y}{2}\leq\sqrt{1.5}\sqrt{x^2+y^2}##
 
Karol if you want to prove

##\frac{3}{2}(x^2+y^2)\geq xy##

first recognize that ##\frac{3}{2}(x^2+y^2) \geq \frac{1}{2}(x^2+y^2)##

now ##xy = \big(x^2 y ^2\big)^{\frac{1}{2}}= \sqrt{\big(x^2 y ^2\big)}##... right? What can you do with that?
 
Karol said:
I know ##\sqrt{x^2+y^2+2xy}\leq\sqrt{x^2+y^2}~##
You do? Try ##x=y=1##
 
$$\frac{3}{2}(x^2+y^2)\geq \frac{x^2+y^2}{2}\geq \sqrt{x^2y^2}=xy$$
But i am not sure i can use the same x for the two setups, 1 and 2.
Capture.JPG

I want the shortest distance between A and B. AC is the shortest and equals the shortest AB
 

Attachments

  • Capture.JPG
    Capture.JPG
    4.6 KB · Views: 417
Last edited:

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
6K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K