Min Max problem: the shortest distance for a light ray

Karol
Messages
1,380
Reaction score
22

Homework Statement


Capture.JPG
Capture.JPG
Capture2.JPG


Homework Equations


Minimum/Maximum occurs when the first derivative=0
GM≤AM: ##~\sqrt{xy}\leq\frac{x+y}{2}##

The Attempt at a Solution


Capture.JPG
[/B]
If the sum of squares of the distances (setup 2) in an arbitrary point is bigger than the sum of the squares of the shortest distances (setup 1, the mid point between A and B) then the distance from an arbitrary point is also bigger. i want to prove without calculus that:
$$2s^2+x^2+y^2\geq 2s^2+2\left[ \frac{x+y}{2} \right]~\rightarrow~\frac{3}{2}(x^2+y^2)\geq xy$$
I want to use GM≤AM so i take the square root of what i need to prove, and i need to prove:
$$\sqrt{1.5}\sqrt{x^2+y^2}\geq\sqrt{xy}$$
I know ##~\sqrt{xy}\leq\frac{x+y}{2}~## so i have to prove:
$$\sqrt{xy}\leq\frac{x+y}{2}\leq\sqrt{1.5}\sqrt{x^2+y^2}$$
And it remains that i have to prove:
$$\frac{x+y}{2}\leq\sqrt{1.5}\sqrt{x^2+y^2}$$
I know ##~\sqrt{(x+y)^2}=\sqrt{x^2+y^2+2xy}\leq\sqrt{x^2+y^2}~## but it doesn't help since i need to insert an inequality
on the left of ##~\sqrt{1.5}\sqrt{x^2+y^2}~## and not on the right side.
 

Attachments

  • Capture.JPG
    Capture.JPG
    10.7 KB · Views: 697
  • Capture2.JPG
    Capture2.JPG
    2.8 KB · Views: 671
  • Capture.JPG
    Capture.JPG
    9.7 KB · Views: 457
Physics news on Phys.org
You can use AM-QM
 
AM-QM, in my case, is exactly GM≤AM: ##~~\sqrt{xy}\leq\frac{x+y}{2}##
It doesn't help in proving ##~\frac{x+y}{2}\leq\sqrt{1.5}\sqrt{x^2+y^2}##
 
Karol if you want to prove

##\frac{3}{2}(x^2+y^2)\geq xy##

first recognize that ##\frac{3}{2}(x^2+y^2) \geq \frac{1}{2}(x^2+y^2)##

now ##xy = \big(x^2 y ^2\big)^{\frac{1}{2}}= \sqrt{\big(x^2 y ^2\big)}##... right? What can you do with that?
 
Karol said:
I know ##\sqrt{x^2+y^2+2xy}\leq\sqrt{x^2+y^2}~##
You do? Try ##x=y=1##
 
$$\frac{3}{2}(x^2+y^2)\geq \frac{x^2+y^2}{2}\geq \sqrt{x^2y^2}=xy$$
But i am not sure i can use the same x for the two setups, 1 and 2.
Capture.JPG

I want the shortest distance between A and B. AC is the shortest and equals the shortest AB
 

Attachments

  • Capture.JPG
    Capture.JPG
    4.6 KB · Views: 402
Last edited:
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top