Minimum-maximum problem with graph plotting

  • Thread starter Thread starter Karol
  • Start date Start date
  • Tags Tags
    Graph Plotting
Karol
Messages
1,380
Reaction score
22

Homework Statement


2.JPG

The first derivative of the area ##~\displaystyle A(a)=a\sqrt{r^2-\frac{a^2}{4}}## is positive everywhere

Homework Equations


When f'(x)>0 → the function rises

The Attempt at a Solution


$$A'=a\frac{1}{2}\left( r^2-\frac{a^2}{4} \right)^{-1/2}\cdot\left( \frac{1}{4} \right)2a+\sqrt{r^2-\frac{a^2}{4}}$$
$$A'=...=\frac{2r^2-a^2}{\sqrt{4r^2-a^2}}>0$$
I found A'=0 at ##~\displaystyle a=\frac{2}{\sqrt{5}}r##
 

Attachments

  • 2.JPG
    2.JPG
    6.8 KB · Views: 670
Physics news on Phys.org
Karol said:

Homework Statement


View attachment 214283
The first derivative of the area ##~\displaystyle A(a)=a\sqrt{r^2-\frac{a^2}{4}}## is positive everywhere

Homework Equations


When f'(x)>0 → the function rises

The Attempt at a Solution


$$A'=a\frac{1}{2}\left( r^2-\frac{a^2}{4} \right)^{-1/2}\cdot\left( \frac{1}{4} \right)2a+\sqrt{r^2-\frac{a^2}{4}}$$
$$A'=...=\frac{2r^2-a^2}{\sqrt{4r^2-a^2}}>0$$
I found A'=0 at ##~\displaystyle a=\frac{2}{\sqrt{5}}r##

No: ##A^{\prime} \neq 0## at ##a = r \; 2 /\sqrt{5},## as you can see from your own expression for ##A^{\prime}##.

Anyway, for a rectangle of base ##a## we need ##a < 2r##, so having a maximum of ##A(a)## at ##a > r## is perfectly OK.
 
Last edited:
$$\frac{2r^2-a^2}{\sqrt{4r^2-a^2}}=0\rightarrow a=\sqrt{2}r$$
But still A'>0 for 0<a<2r
It should be negative for a>√2⋅r
 
Karol said:
$$\frac{2r^2-a^2}{\sqrt{4r^2-a^2}}=0\rightarrow a=\sqrt{2}r$$
But still A'>0 for 0<a<2r
It should be negative for a>√2⋅r

It IS negative for ##a > r \sqrt{2}##.

If you don't believe it, try plotting ##A(a)## for ##r = 1## and ##0 < a < 2##.
 
  • Like
Likes Karol
Thank you Ray!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top