danni7070
- 91
- 0
[Solved] Where did I go wrong?
\int \frac{(x-2)}{x(1+x^2)}dx
\int \frac{x}{x+x^3}dx - \int \frac{2}{x+x^3}dx
I choose u = arctan(x) so du = \frac{1}{1+x^2}
and \int \frac{x}{x+x^3} = \int \frac{1}{1+x^2}
1)
\int \frac{1}{1+x^2}dx = arctan(x)
2)
\int \frac{2}{x+x^3} = \ln (\frac{x^2}{x^2+1})
So \int \frac{(x-2)}{x(1+x^2)}dx = arctan(x) + \ln (\frac{x^2}{x^2+1})
Maybe I'm doing something terribly wrong but maybe not. The answer is according to Texas Instrument calculator:
\ln (\frac{x^2+1}{x^2}) + arctan(x)
\int \frac{(x-2)}{x(1+x^2)}dx
\int \frac{x}{x+x^3}dx - \int \frac{2}{x+x^3}dx
I choose u = arctan(x) so du = \frac{1}{1+x^2}
and \int \frac{x}{x+x^3} = \int \frac{1}{1+x^2}
1)
\int \frac{1}{1+x^2}dx = arctan(x)
2)
\int \frac{2}{x+x^3} = \ln (\frac{x^2}{x^2+1})
So \int \frac{(x-2)}{x(1+x^2)}dx = arctan(x) + \ln (\frac{x^2}{x^2+1})
Maybe I'm doing something terribly wrong but maybe not. The answer is according to Texas Instrument calculator:
\ln (\frac{x^2+1}{x^2}) + arctan(x)
Last edited: