Modeling Input Impedance of MESFET Using Series RLC Circuit

AI Thread Summary
Modeling the input impedance of a MESFET using a series RLC circuit involves challenges in achieving a good match across a frequency range of 6-10 GHz. The user has been plotting reflection coefficients on a Smith Chart and manually tuning LC values while keeping resistance constant, but finds this method tedious and insufficient for accuracy. Suggestions include using a single RLC network to approximate reflection coefficients and considering over-damping to increase bandwidth by lowering the Q factor. The goal is to find a balance that allows for a better approximation of the input impedance across the specified frequency range. Iterative solutions may help improve the matching process.
roeb
Messages
98
Reaction score
1
Hi,

I'm trying to model the input impedance of a MESFET by using a series RLC circuit.

For example I have the following reflection coefficients:
.575 angle(-138) at 6 GHz
.617 angle(170) at 8 GHz
.610 angle(128) at 10 GHz

As you can see, as the frequency changes so too does the angle. Does anyone have any suggestions for how I can analytically or graphically determine a fairly close approximation using a series RLC?

Right now I'm trying to plot the 3 frequencies and the reflection coefficients on a Smith Chart and come up some values but the best I've been able to do so far is
.61 angle(-150)
.59 angle(178)
.61 angle(164)

using L = .442 nH, C = .917 pF and R = 12.85 ohms.

I'd like to get some more accuracy but it seems my method is not working too well.

Thanks,
roeb
 
Engineering news on Phys.org
Graphically, your reflection coefficients on the smith chart should give S11 which should be your normalized input impedance. Just multiply by 50 (or whatever your characteristic impedance is) to get actual input impedance.
 
Hi, thanks for your reply.

I understand how to match a single frequency, but I'm having trouble getting a 'good' match for the range of frequencies. What I want is a single RLC network that can approximate the reflection coefficients over 6-10 GHz.

http://img29.imageshack.us/img29/7175/temppic.png

I'm manually tuning the LC values (pretty much keeping R constant) but it's rather tedious and I can't get all that close. I realize that I'll never get a perfect match, but it seems that I should be able to iteratively solve this so that I can get a bit better.
 
Last edited by a moderator:
roeb said:
Hi, thanks for your reply.

I understand how to match a single frequency, but I'm having trouble getting a 'good' match for the range of frequencies. What I want is a single RLC network that can approximate the reflection coefficients over 6-10 GHz.

I'm manually tuning the LC values (pretty much keeping R constant) but it's rather tedious and I can't get all that close. I realize that I'll never get a perfect match, but it seems that I should be able to iteratively solve this so that I can get a bit better.

Actually, if you want to use just one tuned section and widen your BW, the only thing I can think of is over-damping it to lower the Q factor. You'll choose resonance to be maybe around 8GHz, then vary your resistor to increase or decrease BW. Higher resistance is higher damping, lower Q, and higher BW.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top