Chestermiller said:
Is it correct to say that these results were obtained using the corrected mass transfer description together with all other parameters standard?
Yes these results were obtained using the Tuinier dimensions, flow and initial conditions as much as possible, with the corrected mass transfer coefficients of ##k_{CO_2}##/100 and ##k_{H_2O}##/100. The ##U_b## value is calculated according to the equation in post 305, and the##U_g## value is calculated using the correlations from BSL
Chestermiller said:
We can make our results more like theirs by increasing Ug (I think). You can see that the bed temperature is closer to constant than the gas temperature at -90.
Ok I see what you're saying. If we increase ##U_g## then the gas temperature will more closely follow the bed temperature. Checking a value of ##U_g##= 100000 gives this ##T_g## profile which is visually identical to the ##T_b## profile:
As a note, if I calculate the ##U_g## values at each interval (which gives a range of about 20-50W/m2.K), then ##T_b## starts to show the almost constant temperature section, which doesn't happen at high ##U_g## values. The ##T_g## profile is unchanged from the one above:
Running the opposite (calculated ##U_g## and a high ##U_b## value gives identical output to the ##T_b## and ##T_g## profiles above)
Chestermiller said:
We can also decrease the dispersion by adding more tanks, holding the length of the column constant.
Checking n=100 now for calculated ##U_g## and calculated ##U_b## values (no very high values). This will take a fair while to run so I'll post these results once it finishes
Is this considered 'model tuned'? I guess this is a judgement call rather than anything but it seems pretty close. If this is 'model tuned' I was thinking about taking what was learned during debugging here and applying it to the original liquefaction model (I'm guessing I can find some bugs in that now, and the model is simpler in comparison)
But besides this, I was thinking about some other things. The Tuinier paper (in my view) isn't that useful for a new reader because it doesn't actually say how good the system is (or can be), but rather just shows output for the system they used. What I mean is that they don't define performance parameters that would allow someone to compare this system with others or get a feel for how good this system actually is
To do something like this would involve (I think) answering questions like "what performance parameters are actually useful to calculate here?", "what simulations best show how these performance parameters vary with varied input" and lastly "does the model need to be developed further to be 'different enough' from the Tuinier model". Or something like these anyway
Regarding the performance parameters, I guess there are standard ones. However, possibly one meaningful parameter is the separation efficiency (how good can the system get at separating CO2 from both N2 and H2O in theory).
And lastly one other thing Tuinier didn't do is vary the ICs/BCs to arrive at an optimal solution (optimising the performance parameters). This sounds interesting to do and would also be novel as far as I can see (just trying to think of ways to further separate this model from Tuinier and make it of use to a future reader)