Molar specific heat of an ideal gas

fiziks09
Messages
28
Reaction score
0

Homework Statement



A sample of a diatomic ideal gas has pressure P and volume V. When the gas is warmed, it's pressure triples and the it's volume doubles. This warming process includes two steps, the first at constant pressure and the second at constant volume. Determine the energy transferred by heat.


Homework Equations



Q = nCvΔT(constant volume)
Q = nCpΔT(constant pressure)

The Attempt at a Solution


Since it occurs in two phases, my thought was to add Q1 + Q2. Q1 at constant pressure and Q2 at constant volume i.e.

(n x 7/2R x ΔT) +(n x 5/2R x ΔT)
nRΔT is common thus;
nRΔT(7/2 + 5/2)
= 6nRΔT. or 6PV (since PV = nRT)

But my answer is wrong..and I'm NOT sure if my conclusion that nRΔT = nRT is true..
Any help is very much appreciated..thanks
 
Physics news on Phys.org
Hi fiziks09! :smile:

Did you notice that you did not use the information that the pressure triples and the volume doubles?

Consider also that you don't know ΔT of each process step. They will not be the same.
 
thanks..
i noticed that..but the thing is i don't know where to fit that information. I also can't think of any other equations relevant to the question aside from the ones in put up there
 
What about the ideal gas formula: PV=nRT?
 
Okay..i have been on this quite a while now..
i substituted n = PV/RT in the equations for both constant pressure and constant volume..
i then used p = 3P and v = 2V.. but it didn't work..

Also..how about the initial states of the gas, i couldn't figure out where to fit them in ?.
 
What did not work?

The initial state of the gasses would be P=Po, and V=Vo.

Step 1 is constant pressure, so V changes from Vo to 2Vo at P=Po.
Furthermore Q = nCpΔT. Calculate ΔT from P and V.

Step 2 is constant volume, so P changes from Po to 3Po at V=2Vo.
Furthermore Q = nCvΔT. Calculate ΔT from P and V.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top