1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Moment of inertia/radius of gyration

  1. May 12, 2005 #1
    Can someone please tell me where I've gone wrong with this question?

    "A thin rectangular sheet of sides 2a and 2b about an axis through its centre of mass and parallel to the side 2b. Show that the radius of gyration, k, of the sheet is given by [itex]k = \frac{a}{\sqrt{3}}[/itex]"

    I drew a rectangle of sides 2a and 2b and then drew an axis through the centre of the rectangle and parallel to the 2b side and labelled it y.

    Then

    [tex]I_{y} = \int_{-b}^{b} y^2 dm[/tex]

    I divided the sheet into strips perpendicular to the axis, each having a mass [itex]dm = \sigma dA = \sigma 2a dy[/itex] where [itex]\sigma[/itex] is the mass per unit area.

    So, [tex]I_{y} = \sigma 2a \int_{-b}^{b} y^2 dy = \sigma 2a \left[ \frac{y^3} {3} \right]_{-b}^{b} \Rightarrow I_{y} = \sigma 2a \frac{2b^3} {3}[/tex]

    Now [tex]M = \sigma A = \sigma 2a 2b \Rightarrow I_{y} = \frac{Mb^2} {3} = Mk^2 \Rightarrow k = \frac{b} {\sqrt{3}}[/tex]

    I don't understand why my integration is wrong.

    Thanks.
     
  2. jcsd
  3. May 12, 2005 #2

    FredGarvin

    User Avatar
    Science Advisor

    You are mistaking your axes for the integration.

    To find Iy you need to (using rho as mass per area):

    [tex] I_{y} = \int_{-a}^{a} x^2 dm[/tex]

    [tex]I_{y} = 2 \rho b \int_{-a}^{a} x^2 dx[/tex]

    [tex]I_{y} = \frac{2 \rho b}{3} (a^3 - (-a^3)) [/tex]

    [tex]I_{y} = \frac{4 \rho b}{3} a^3[/tex]

    Now you can say that [tex]M = \rho 4 a b[/tex]

    That leaves you with:
    [tex]I_y = k^2 M[/tex]

    [tex]\frac{4 \rho b}{3} a^3 = \rho 4 a b k^2[/tex]

    [tex]k = \frac{a}{\sqrt{3}}[/tex]
     
  4. May 12, 2005 #3
    Oh damn it! Thank you :smile:.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?