Techniques for Evaluating Momentum Space Integrals with Spherical Coordinates?

Nick Heller
Messages
4
Reaction score
0

Homework Statement


This integral has to do with the probability amplitude that a free particle at position x0 is found at x at some time t. With H = p2/(2m), this involves evaluating the integral
1/(2π)3∫d3p e-i(p2/(2m))t eip(x-x0)
The answer is
(m/(2πit))3/2e(im(x-x0)2)/(2t)

2. Homework Equations

H = p2/(2m)

The Attempt at a Solution


I am not sure how to work with d3p, since I don't know how to decompose it in terms of p besides dpxdpydpz. When I try to evaluate that integral Mathematica takes forever, so I'm not sure its the right approach. When I just use this instead and evaluate from -∞ to ∞ or 0 to ∞ I get e(im(x-x0)2)/(2t) times a factor that does not equal (m/(2πit))3/2 and with some combinations of erf functions which is a red flag. How do I evaluate this?
 
Last edited:
Physics news on Phys.org
Nick Heller said:
I get e(im(x-x0)2)/(2t) times a factor that does not equal (m/(2πit))
What does this factor look like before you try to evaluate it. Is it an integral of some sort?
 
Last edited:
The Gaussian integral is,
##\int_{-\infty}^\infty e^{-\alpha x^2}dx=\sqrt{\frac{ \pi} {\alpha}}##.
You can rewrite the exponential in the integral as:
## e^{(\frac {-it} {2m})(p_z^2 + p_y^2 + p_x^2 + \frac {(x-x_0)(2m)} {t} p_x) } = e^{\frac {im(x-x_0)^2} {2t}} e^{(\frac {-it} {2m}) (p_z^2 + p_y^2 +( p_x - \frac {(x-x_0)m} {t} )^2)} ##
The integral becomes:
##\frac {e^{\frac {im(x-x_0)^2} {2t}}} {(2\pi)^3} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty dp_x dp_y dp_z e^{(\frac {-it} {2m}) (p_z^2 + p_y^2 +( p_x - \frac {(x-x_0)m} {t} )^2)} ##
Making a change of variables in ## p_x## and using the Gaussian integral result for ## p_x, p_y, p_z## the answer follows.
 
Is there any techinques to evalute integrals like this, with respect to spherical coordinate??
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top