MOSFET Transistors as Switches

AI Thread Summary
MOSFET transistors operate differently in the triode and saturation regions, affecting how drain current relates to gate-source voltage. In the triode region, the drain current increases with gate-source voltage as the effective resistance changes, while in saturation, the current is primarily determined by the drain-source voltage and the fixed resistance of the material. The confusion arises from the interpretation of the equations in the textbook images, which describe these varying conditions. Both images are correct but apply under different operational states of the MOSFET. Understanding these distinctions clarifies how MOSFETs function as switches in electronic circuits.
Fascheue
Messages
16
Reaction score
3
I’ve attached two images from my textbook. One describing how MOSFEET’s act like small resistances when in the triode region and open circuits when in the cutoff region, the other a list of equations describing the behavior of an NMOS transistor. I’m having trouble making sense of these two pages.

In the triode region, does the drain current depend on the gate-source voltage? These to pages seem to suggest different answers to that question. In the first image, it looks like drain current will increase as the gate-source voltage increases. In the second image, it looks like drain current remains constant as the gate-source voltage increases. drain current seemingly only depends of the drain-source voltage in this case.

Any clarification would be helpful, thanks.
 

Attachments

  • 7085C189-F062-48F7-B6E5-8E08AA8B9CB3.jpeg
    7085C189-F062-48F7-B6E5-8E08AA8B9CB3.jpeg
    57.7 KB · Views: 365
  • 3C34D527-87BD-4463-80FD-E9637AA0BF81.jpeg
    3C34D527-87BD-4463-80FD-E9637AA0BF81.jpeg
    47.7 KB · Views: 291
Engineering news on Phys.org
In both the triode region and in the saturation region, the drain current will increase as the gate-source voltage increases. What in the second image made you think otherwise?
 
  • Like
Likes Fascheue
phyzguy said:
In both the triode region and in the saturation region, the drain current will increase as the gate-source voltage increases. What in the second image made you think otherwise?
The MOSFET in the triode region is being modeled as a resistor. From ohm’s law, the current across that resistor in the second image should be equal to V/R, where V is the drain-source voltage. In the equation I = Vds/R, there is no gate-source voltage dependency.

And isn’t the second image suggesting that this resistor model holds whenever the gate voltage is sufficiently high?
 
Fascheue said:
The MOSFET in the triode region is being modeled as a resistor. From ohm’s law, the current across that resistor in the second image should be equal to V/R, where V is the drain-source voltage. In the equation I = Vds/R, there is no gate-source voltage dependency.

And isn’t the second image suggesting that this resistor model holds whenever the gate voltage is sufficiently high?
The value of that resistance will drop as the gate-source voltage is increased, at least until it becomes limited by the resistance of the wires, etc.
 
  • Like
Likes Fascheue
If you look at the I-V characteristics down near rhe origin, it can basically be considered as a voltage controlled resistor, where the resistance is a function of the gate-source voltage.
260px-IvsV_mosfet.svg.png
 
  • Like
Likes Fascheue
Fascheue said:
In the first image, it looks like drain current will increase as the gate-source voltage increases. In the second image, it looks like drain current remains constant as the gate-source voltage increases. drain current seemingly only depends of the drain-source voltage in this case.
Simple answer: They are both correct, but under different conditions.

The details:
In the first case, the device in operating in the linear, or triode, region. The Gate-Source voltage (VGS) is such that it is partially pinching off the Conduction Channel between Source and Drain. As the Conduction Channel varies in size with the VGS changes, the effective resistance changes... just as a smaller wire has a higher resistance than a large diameter wire. (With a little hand-waving), this is how you get amplification, by having a voltage on the gate controlling how much current flows between Source and Drain.

In the second case, the VGS is such that the conduction channel is at its maximum size, and the current is limited by the resistance of the bulk Source-Drain material and the applied Source-Drain voltage. Since this is a fixed resistance, the current is determined by the applied voltage.

Hopes this helps!

Cheers,
Tom
 
  • Like
Likes essenmein
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top