Motion in 2d/Centripetal Acceleration

AI Thread Summary
A particle moving in the xy plane with a constant acceleration of (2i + 4j) m/s² starts from rest, leading to velocity components of Vx = (2t) m/s and Vy = (4t) m/s. The coordinates of the particle after time t are x = t² m and y = 2t² m, with speed calculated using the Pythagorean theorem. For a ball swinging in a vertical circle, the total acceleration at 36.9 degrees is given as (-22.5i + 20.2j) m/s², leading to a centripetal acceleration magnitude of 62.8 m/s². The velocity is determined to be 9.7 m/s using the relationship between centripetal acceleration, radius, and velocity.
HurricaneH
Messages
10
Reaction score
0
...sorry for doing this, but having trouble with some problems

1) A particle starts from rest at t=0 at the origin and moves in the xy plane with a constant acceleration of a= (2i + 4j) m/s2. After a time t has elaped, determine (a) the x and y components of velocity. (b) the coordinates of the particle, and (c) the speed of the particle.

I get a) Vx= (2t)m/s and Vy=(4t)m/s, but not the rest...


and...

2) A ball swings in a vertical circle at the end of a rope 1.5 M long. When it is 36.9* past the lowest point on its way up, the ball's total acceleration is (-22.5i + 20.2j) m/s2. For that instant, a) determine the magnitude of its centripetal acceleration, and b) determine the magnitude and direction of its velocity.

I know that v^2/R= Ac, but i don't know how to get the velocity:(

Any help will be appreciated
 
Physics news on Phys.org
1) A particle starts from rest at t=0 at the origin and moves in the xy plane with a constant acceleration of a= (2i + 4j) m/s2. After a time t has elaped, determine (a) the x and y components of velocity. (b) the coordinates of the particle, and (c) the speed of the particle.

Use uniform acceleration kinematic equations, or use calculus. Integrate Acceleration, then integrate Velocity.

\vec{a} = \frac{d \vec{v}}{dt}

\vec{v} = \frac{d \vec{r}}{dt}


2) A ball swings in a vertical circle at the end of a rope 1.5 M long. When it is 36.9s past the lowest point on its way up, the ball's total acceleration is (-22.5i + 20.2j) m/s2. For that instant, a) determine the magnitude of its centripetal acceleration, and b) determine the magnitude and direction of its velocity

Remember

A_{c} = \frac{v^2}{r}

Refers to Magnitude.
 
but how do i find out the velocity?
 
Well I got it. For 1 b) x=t^2m y=2t^2, for c) a^2 + b^2= c^2, c= velocity.

For 2. The angles of the directionals were 36.9 and 53.1, then cos36.9=20.2/x, solve for x, cos53.1= 22.5/x2, solve for x2, add both xs, and you get 62.8 m/s for the magnitude of its centripetal acceleration. For c, v^2/r= aC, we have the aC and r, so v^2/1.5=62.8, simple algebra, and v=9.7m/s.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top