Motion in Nonlinear Differential Equations

kgns
Messages
1
Reaction score
0

Homework Statement



How do you derive the time-dependent velocity equation for motion along a curve, such as a skateboarder on a half pipe?

For the sake of abstraction, I ask myself the following:

A uniform sphere of mass m and radius r is set free from the top edge of a semicircle half pipe with radius R. If R > r, what is the time-dependent velocity equation v(t) for the sphere in terms of t, m, r, R and g?

(i) ignoring any effects of friction?
(ii) if the sphere is rotating?2. The attempt at a solution

If it were an inclined plane, we'd have no problem with
v(t)=gtsin(\alpha)

Considering the halfpipe an infinitesimal sum of inclined planes we'd get
\int^{0}_{t}gsin\alpha(t)\partial\alpha

However I've failed to derive \alpha in terms of t.

How can I model such a problem in differential equations?
 
Physics news on Phys.org
I assume this is all in the plane at right angles to the trough's axis.
If you ignore friction then the object will slide, so its shape is somewhat irrelevant. The problem becomes a simple pendulum, but using the exact equation, not the approximation for small angles that makes it effectively SHM. You should be able to derive the ODE using the usual free body approach.
For a rolling sphere, I don't expect it to be much different. Should be equivalent to reduced gravity. Again, do try to obtain the equation.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top