Hi all,(adsbygoogle = window.adsbygoogle || []).push({});

I'm studying ## \mu \to e~ \gamma ## decay from cheng & Lie' book " gauge theory of elementary particles ". In Equation (13.84), he wrote the neutrino propagator

## \sum_i \Big ( \frac{U^{*}_{ei} U_{\mu i}}{(p+k)^2-m_i^2} \Big), ##

(where the sum taken over neutrinos flavors) in the form:

##\sum_i U^{*}_{ei} U_{\mu i} \Big ( \frac{1}{(p+k)^2} + \frac{m_i^2}{[(p+k)^2]^2} + ...... \Big) ##

##= \sum_i \frac{U^{*}_{ei} U_{\mu i} m_i^2}{[(p+k)^2]^2} + ........##

Do any one know how did he drive this ? Then he write that:

the leading term vanishes, ## \sum_i U^{*}_{ei} U_{\mu i}##, reflecting the GIM cancellation mechanism.

I can't get this statement ..

Thanks,

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I ## \mu~\to e~ \gamma ## decay width and neutrino propagator

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - mu~to gamma decay | Date |
---|---|

A Confusion regarding the $\partial_{\mu}$ operator | Jul 24, 2017 |

A Average mu LHC | Jan 8, 2017 |

About mu-mesic atoms | Dec 22, 2015 |

Why ratio atmospheric ##\nu_\mu : \nu_e = 2:1## | Jul 15, 2015 |

##\mu##2##e\gamma## probability | Jun 6, 2015 |

**Physics Forums - The Fusion of Science and Community**