Multivariable Calculus book for a Physics major

AI Thread Summary
The discussion centers around the suitability of the textbook "Multivariable Calculus" by Ron Larson for a Calculus III course, particularly for engineering students. The original poster expresses a preference for a more mathematically rigorous text but is constrained by scheduling conflicts with other classes. Responses indicate that Larson's text is generally well-regarded, similar in quality to Stewart's, and suitable for both applied and pure mathematics. Suggestions for alternative texts include "Vector Calculus" by Marsden and Tromba, which is praised for its mathematical foundation and affordability, and "Vector Calculus, Linear Algebra, and Differential Forms" by Hubbard and Hubbard, noted for its depth and integration of advanced concepts. Some participants also mention the importance of rigor in mathematical texts and express interest in texts that bridge calculus with linear algebra and differential forms, especially for students considering graduate studies. The conversation touches on the perceived quality of foreign mathematics texts, with some debate about their accessibility and the validity of comparisons to American texts.
LBloom
Messages
169
Reaction score
0
Hi everybody.

I'm currently taking Calculus III with applications, and the book they gave us was Multivariable Calculus by Ron Larson. I wanted to Calc III, which is more pure math as opposed to the class I'm in that's mostly for engineers (theres a third class oriented even more for applications, but that was ruled out), but it conflicted with my physics class, which obviously has priority. I was wondering If this textbook is any good or should I look for another textbook more oriented towards physicists and pure math? I'm not exactly sure what audience the textbook was written for (applied vs. pure).
 
Physics news on Phys.org
I liked the Larson book for Calc I and II but I cannot tell for Calc III. I used Stewart (other than the recommended text) and loved it!

P.S. I am in Engineering
 
I have heard that the calc texts by Larson are not that bad. As for the pure vs. applied thing, I'm not quite sure. I think the text would be similar to that of Stewarts, which doesn't really seem like more "engineer oriented" or anything (there will be problems of both flavor). But I guess purity also depends on rigor, but this is probably best saved for later. Many people study analysis after calc III, and manifolds usually comes later, so it's probably best to save a thoroughly rigorous treatment of the subject for later. Bottomline is I think you could get a lot out of this text.
 
The text Vector Calculus by Marsden and Tromba is pretty good, I studied my way through it over the summer. It provides a more mathematical foundation for some of the concepts, while still giving a lot of good example problems. Plus, you can get a used copy of the fourth edition (just as good as the fifth for self study) for as low as $4 on amazon!
 
It's good to hear the Larson book is pretty good for MV. Last thing i need when i take more pure math classes is trouble catching up. I may take more applied later, depending interests and that stuff.

I liked the Larson book for Calc I and II but I cannot tell for Calc III. I used Stewart (other than the recommended text) and loved it!

I've heard the name Stewart pop up a lot so i guess i should look into that (any old copies or something at the library i guess)

I haven't read it myself, but Div, Grad, Curl, and All That: An Informal Text on Vector Calculus is supposed to be quite good

huh, I've heard of informal texts for physics, biology and the other sciences, but never for math (havent really looked either.) Figured there wasnt really a market for it, but i guess it always helps for students.

The text Vector Calculus by Marsden and Tromba is pretty good...Plus, you can get a used copy of the fourth edition (just as good as the fifth for self study) for as low as $4 on amazon!

you read my mind :smile:
 
The book "vector calculus, linear algebra and differential forms" by hubbard and hubbard is really good, if you are willing to work hard. It is in the 3rd edition and is sold by a small book company (matrix editions, or somethign like that). It covers a year worth of material (linear algebra, sequences and series, multivariable calculus, manifolds, differential forms, Lebesgue integration in a different way than is usually taught, electrodynamics, etc.), but is really interesting and well written. Warning - this is only if you are quite serious about math! It is used in "honors" classes for this subject. Google will tell you where it is used. But don't despair, the hardest proofs are shoved in an appendix that is like 100 pages long!

I have the 2nd edition checked out from the library, and it is really really good.

I learned multivariable calc from Thomas and Finney, and picked up additional stuff later on my own. It was adequate, but uninspiring. Yes, I took the "engineering math" sequence, as I am an engineer! The relationship between linear algebra and multivariable calculus is useful and fun.

Jason
 
jasonRF said:
The book "vector calculus, linear algebra and differential forms" by hubbard and hubbard is really good, if you are willing to work hard. It is in the 3rd edition and is sold by a small book company (matrix editions, or somethign like that). It covers a year worth of material (linear algebra, sequences and series, multivariable calculus, manifolds, differential forms, Lebesgue integration in a different way than is usually taught, electrodynamics, etc.), but is really interesting and well written. Warning - this is only if you are quite serious about math! It is used in "honors" classes for this subject. Google will tell you where it is used. But don't despair, the hardest proofs are shoved in an appendix that is like 100 pages long!

I second Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach by Hubbard. I am a graduate student in math wanting to relearn vector calculus, and this is the book I'm going to do it with. I haven't read the book yet, but I've browsed the http://matrixeditions.com/". The fantastic thing about the book is that it integrates the standard vector calculus approach with differential forms (the modern and higher level approach), which was exactly what I was looking for in a vector calculus book. I believe he even shows the usefulness of differential forms in dealing with Maxwell's equations. A physics major, especially one wanting to go to graduate school, could benefit greatly from this book.

Also, the 4th edition is out, and is available on their ordering page.
 
Last edited by a moderator:
Thanks for the info about "Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach by Hubbard". I looked it up online and it looks like a good book for vector calculus. I'll see if I can get it at my library or i might try buying it. From what I've read, and from what you've guys have said, it sounds interesting and difficult, which is of course a good combination!

Anyway, I"ll look into the books and thanks for the advice!
 
  • #10
LBloom said:
Hi everybody.

I'm currently taking Calculus III with applications, and the book they gave us was Multivariable Calculus by Ron Larson. I wanted to Calc III, which is more pure math as opposed to the class I'm in that's mostly for engineers (theres a third class oriented even more for applications, but that was ruled out), but it conflicted with my physics class, which obviously has priority. I was wondering If this textbook is any good or should I look for another textbook more oriented towards physicists and pure math? I'm not exactly sure what audience the textbook was written for (applied vs. pure).

I think Zorik(from moskow state university,Russia)'s mathematical analysis is wonderful.
And phichdingolzt's calculas 1,2,3 are also very good.
They are all better than American's.
 
  • #11
chloeagnew said:
I think Zorik(from moskow state university,Russia)'s mathematical analysis is wonderful.
And phichdingolzt's calculas 1,2,3 are also very good.
They are all better than American's.

A quick Google search turned up nothing for either of those books. Are they even in English or published books? Also, I don't think it's correct, not to mention polite, to make such a judgement as they are ''all better than American's". What does that even mean, and have you read the so-called American books? By the way, to my knowledge, John Hubbard, the author of the book mentioned above, is French. Calculas is also spelled calculus.
 

Similar threads

Replies
12
Views
4K
Replies
12
Views
8K
Replies
3
Views
2K
Replies
4
Views
7K
Replies
7
Views
2K
Replies
8
Views
5K
Replies
26
Views
5K
Back
Top